Skip to main content
Log in

Creating a Reference Plane Ultrasonic Wave in a Fluid Using a Plane Piezoelectric Transducer with a Large Wave Dimension

  • CLASSICAL PROBLEMS OF LINEAR ACOUSTICS AND WAVE THEORY
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The article discusses the possibility of using a plane piezoelectric transducer with a large wave dimension as the source of a reference plane ultrasonic wave, which can be used to calibrate hydrophones in the megahertz frequency range. In the experiment, the source was a piezoceramic disk with a diameter of 100 mm and a thickness resonance frequency of about 1 MHz. A method was developed for determining the sensitivity of the transducer in the transmit mode by measuring its electrical impedance. A methodology is proposed for finding the parameters of the plane wave component of the emitted acoustic pulse from a known electrical signal on a generator. It is shown that the acoustic pulse profile measured by a calibrated hydrophone near the source agrees well with the theoretically predicted signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. R. J. Bobber, Underwater Electroacoustic Measurements (Naval Res. Lab. Washington, 1970; Mir, Moscow, 1974).

  2. V. K. Dolya, Soviet Physics Acoustics. 33 (4), 367 (1987).

    Google Scholar 

  3. A. V. Nikolaeva, S. A. Tsysar’, and O. A. Sapozhnikov, Acoust. Phys. 62 (1), 38 (2016).

    Article  ADS  Google Scholar 

  4. A. G. Sanin, P. K. Chichagov, and A. M. Reiman, in Ultrasonic Diagnostics. Collection of Scientific Papers of Institute of Applied Physics of RAS (Gorkii, 1983), p. 21 [in Russian].

    Google Scholar 

  5. M. V. Khasanova, S. A. Tsysar’, D. A. Nikolaev, and O. A. Sapozhnikov, Memoirs of the Faculty of Physics, Lomonosov Moscow State University, No. 5, 1750709-1 (2017).

  6. D. Nikolaev, S. Tsysar, A. Krendeleva, O. Sapozhnikov, and V. Khokhlova, Proc. Meet. Acoust. 38, 045012/1 (2019).

  7. A. E. Isaev, Yu. M. Aivazyan, and A. M. Polikarpov, Al’m. Sovr. Metrol., No. 1, 163 (2020).

  8. A. A. Kharkevich, The Theory of Electroacoustical Transformers. Selected Works in Three Vols. (Nauka, Moscow, 1973), Vol. 1 [in Russian].

    Google Scholar 

  9. G. S. Kino, Acoustic Waves: Devices, Imaging and Analog Signal Processing (Prentice-Hall, Englewood Cliffs, NJ, 1987; Mir, Moscow, 1990).

  10. O. A. Sapozhnikov, Yu. A. Pishchal’nikov, and A. V. Morozov, Acoust. Phys. 49 (3), 354 (2003).

    Article  ADS  Google Scholar 

  11. O. A. Sapozhnikov, S. A. Tsysar, V. A. Khokhlova, and W. Kreider, J. Acoust. Soc. Am. 138 (3), 1515 (2015).

    Article  ADS  Google Scholar 

  12. L. F. Lependin, Acoustics (Vysshaya Shkola, Moscow, 1978) [in Russian].

    Google Scholar 

  13. V. V. Krylov, Foundation of Sound Radiation and Scattering Theory (Moscow Univ., Moscow, 1989) [in Russian].

    Google Scholar 

  14. D. Cathignol, O. A. Sapozhnikov, and J. Zhang, J. Acoust. Soc. Am. 101 (3), 1286 (1997).

    Article  ADS  Google Scholar 

  15. O. A. Sapozhnikov and M. A. Smagin, Acoust. Phys. 61 (2), 181 (2015).

    Article  ADS  Google Scholar 

  16. A. A. Dorofeeva and O. A. Sapozhnikov, Memoirs of the Faculty of Physics, Lomonosov Moscow State University, No. 5, 1750301-1 (2017).

  17. A. D. Grigor’ev, Electrodynamics and Microwave Frequency Engineering (Vysshaya shkola, Moscow, 1990) [in Russian].

  18. K. J. Parker and E. M. Friets, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 34 (4), 454 (1987).

    Article  Google Scholar 

  19. A. V. Egorov, I. V. Ovchinnikov, and I. A. Zhukov, Izv. Altai. Gos. Univ. 1 (1), 125 (2010).

    Google Scholar 

  20. V. S. Kononenko, Acoust. Phys. 52 (6), 696 (2006).

    Article  ADS  Google Scholar 

  21. D. R. Bacon, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35 (2), 152 (1988).

    Article  Google Scholar 

  22. M. E. Schafer, in Ultrasonic Exposimetry, Ed. by M. C. Ziskin and P. A. Lewin (CRC Press, Boca Raton, FL, 1993), Chap. 8.

    Google Scholar 

  23. C. Koch and W. Molkenstruck, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46 (5), 1303–1314 (1999).

    Article  Google Scholar 

  24. A. E. Isaev and I. V. Chernikov, Acoust. Phys. 61 (6), 699 (2015).

    Article  ADS  Google Scholar 

  25. D. Yamazaki, K. Yamada, and K. Nakamura, Jpn. J. Appl. Phys. 40 (12), 7166 (2001).

    Article  ADS  Google Scholar 

  26. V. V. Kazakov and A. G. Sanin, Acoust. Phys. 63 (1), 104 (2017).

    Article  ADS  Google Scholar 

Download references

Funding

The research was supported by the Russian Science Foundation (grant no. 19-12-00148). A.A. Krokhmal’s work was supported by the BASIS Foundation for the Development of Theoretical Physics and Mathematics.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Krokhmal or O. A. Sapozhnikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krokhmal, A.A., Nikolaev, D.A., Tsysar, S.A. et al. Creating a Reference Plane Ultrasonic Wave in a Fluid Using a Plane Piezoelectric Transducer with a Large Wave Dimension. Acoust. Phys. 66, 449–460 (2020). https://doi.org/10.1134/S1063771020050061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771020050061

Keywords:

Navigation