Skip to main content
Log in

Reconstructing the Directivity Pattern of a Sound Source in Free Space by Measuring its Field in a Tank

  • OCEAN ACOUSTICS. HYDROACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The paper discusses reconstruction of the directivity pattern of a sound source in free space from measurements of the field excited by this source in a tank. The reconstruction procedure uses a reference acoustic monopole. The field of the calibrated source is compared with the fields emitted by the monopole from several specially selected points of the tank. The signals of the source and reference monopole are recorded by the same receivers. From these measurements, the field of the source in the tank is approximated by superposing the fields of the acoustic monopoles. Conditions are formulated under which the field of the source in free space can be represented as the superposed fields of the same monopoles. This makes it possible to calculate the directivity pattern of the calibrated source in free space. The efficiency of the method is confirmed by numerical simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. R. J. Bobber, Underwater Electroacoustic Measurements (Naval Res. Lab., Washington, 1970; Mir, Moscow, 1974).

  2. S. P. Robinson, Review of Methods for Low Frequency Transducer Calibration in Reverberant Tanks, NPL Report CMAM 034 (National Physical Laboratory, 1999).

  3. S. P. Robinson, G. Hayman, P. M. Harris, and G. A. Beamiss, Meas. Sci. Technol. 29, 085001 (2018).

    Article  ADS  Google Scholar 

  4. A. E. Isaev and A. N. Matveev, Acoust. Phys. 55 (6), 762 (2009).

    Article  ADS  Google Scholar 

  5. A. E. Isaev, A. S. Nikolaenko, and I. V. Chernikov, Acoust. Phys. 63 (2), 175 (2017).

    Article  ADS  Google Scholar 

  6. A. L. Virovlyansky and M. S. Deryabin, J. Sound. Vib. 455, 69 (2019).

    Article  Google Scholar 

  7. G. H. Koopmann, L. Song, and J. B. Fahnline, J. Acoust. Soc. Am. 86 (6), 2433 (1989).

    Article  ADS  Google Scholar 

  8. Yu. I. Bobrovnitskii and T. M. Tomilina, Akust. Zh. 41 (5), 737 (1995).

    Google Scholar 

  9. M. E. Johnson, S. J. Elliott, K.-H. Baek, and J. Garcia-Bonito, J. Acoust. Soc. Am. 104 (3), 1221 (1998).

    Article  ADS  Google Scholar 

  10. Y.-B. Zhang, F. Jacobsen, C.-X. Bi, and X.-Z. Chen, J. Acoust. Soc. Am. 126 (3), 1257 (2009).

    Article  ADS  Google Scholar 

  11. Y. J. R. Gounot and R. E. Musafir, J. Sound. Vib. 330 (15), 3698 (2011).

    Article  Google Scholar 

  12. S. Lee, J. Comput. Acoust. 25 (1), 1630001 (2017).

    Article  MathSciNet  Google Scholar 

  13. E. Fernandez-Grande, A. Xenaki, and P. Gerstoft, J. Acoust. Soc. Am. 141 (1), 532 (2017).

    Article  ADS  Google Scholar 

  14. G. H. Holub and C. F. Van Loan, Matrix Computations (Johns Hopkins Univ. Press, 1966; Mir, Moscow, 1999).

  15. K. Aki and P. G. Richards, Quantitative Seismology (W. H. Freeman, 1980; Mir, Moscow, 1983).

  16. T. D. Rossing, Springer Handbooks of Acoustics (Springer, New York, 2007).

    Book  Google Scholar 

  17. E. G. Williams, Fourier Acoustic. Sound Radiation and Nearfield Acoustical Holography (Acad. Press, San Diego, 1999).

    Google Scholar 

  18. N. Gumerov and R. Duraiswami, Fast Multipole Methods for the Helmholtz Equation in Three Dimensions (Elsevier, Oxford, 2004).

    MATH  Google Scholar 

  19. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematival Tables, Ed. by M. Abramowitz and I. A. Stegun (Dover Publ., 1964; Nauka, Moscow, 1979).

  20. R. B. Vaganov and B. Z. Katsenelenbaum, Foundations of Diffraction Theory (Nauka, Moscow, 1982) [in Russian].

    MATH  Google Scholar 

  21. G. M. Sverdlin, Applied Hydroacoustics (Sudostroenie, Leningrad, 1990) [in Russian].

    Google Scholar 

  22. J. L. Butler and C. H. Sherman, Transducers and Arrays for Underwater Sound (Peninsula Press, Springer, 2016).

    Book  Google Scholar 

Download references

Funding

The research was carried out within the state assignment of IAP RAS (projects 0035-2019-0019 and 0035-2019-0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Virovlyansky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Virovlyansky, A.L., Kazarova, A.Y. & Lyubavin, L.Y. Reconstructing the Directivity Pattern of a Sound Source in Free Space by Measuring its Field in a Tank. Acoust. Phys. 66, 501–507 (2020). https://doi.org/10.1134/S1063771020050152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771020050152

Keywords:

Navigation