Synthesis 2021; 53(03): 538-546
DOI: 10.1055/s-0040-1707387
paper

Efficient Access to Isoquinolines via Rhodium-Catalyzed Oxidative Annulation of Pyridyl C–H Bonds Directed by Carbonyl with Internal Alkynes

Lijun Shi
a   State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. of China
b   University of the Chinese Academy of Sciences, Beijing 100049, P. R. of China
,
Mingshan Wen
a   State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. of China
,
Fuwei Li
a   State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. of China
› Author Affiliations
This work was funded by the National Key Research and Development Program of China (2018YFB1501600), the National Natural Science Foundation of China (21773271 and 21972151), the Light of West China of the Chinese Academy of Sciences (CAS), and the Key Research Program of Frontier Sciences, CAS (QYZDJSSW-SLH051).


Abstract

An efficient synthesis of amino-substituted isoquinolines via Rh(III)-catalyzed oxidative [2+2+2] annulation of pyridines with alkynes has been developed, which is cooperatively enabled by a directing carbonyl and steric hindrance adjacent to the amino group of the pyridine, via a six-membered rhodacyclic intermediate without coordination with the pyridinic nitrogen. The establishment of this C–H activation strategy also paves the way for other oxidative transformations of heterocyclic C–H bonds.

Supporting Information



Publication History

Received: 20 July 2020

Accepted after revision: 18 August 2020

Article published online:
15 September 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a Organic Reactions, Vol. 6. Adams R. Wiley; New York: 1951: 74-206
    • 2b Wolfe JP. Bischler–Napieralski Reaction. In Name Reactions in Heterocyclic Chemistry. Li JJ. Wiley; Hoboken, NJ: 2005: 376
    • 3a Li JJ, Gribble GW. Palladium in Heterocyclic Chemistry . Pergamon; New York: 2000
    • 3b Zeni G, Larock RC. Chem. Rev. 2006; 106: 4644
    • 3c Fischer D, Tomeba H, Pahadi NK, Patil NT, Huo Z, Yamamoto Y. J. Am. Chem. Soc. 2008; 130: 15720
    • 3d Guimond N, Fagnou K. J. Am. Chem. Soc. 2009; 131: 2050
    • 3e Guimond N, Gorelsky SI, Fagnou K. J. Am. Chem. Soc. 2011; 133: 6449
    • 3f Song G, Wang F, Li X. Chem. Soc. Rev. 2012; 41: 3651
    • 3g He L, Li H, Neumann H, Beller M, Wu X.-F. Angew. Chem. Int. Ed. 2014; 53: 1420
    • 3h Eftekhari-Sis B, Zirak M. Chem. Rev. 2015; 115: 151
    • 3i Piou T, Rovis T. Acc. Chem. Res. 2018; 51: 170
    • 3j Cheng J, Xie J, Zhu C. Chem. Commun. 2018; 54: 1655
    • 3k Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
    • 3l Wang Z.-S, Chen Y.-B, Zhang H.-W, Sun Z, Zhu C, Ye L.-W. J. Am. Chem. Soc. 2020; 142: 3636
  • 4 Umeda N, Tsurugi H, Satoh T, Miura M. Angew. Chem. Int. Ed. 2008; 47: 4019
    • 5a Li H, Yan X, Zhang J, Guo W, Jiang J, Wang J. Angew. Chem. Int. Ed. 2019; 58: 6732
    • 5b Kong W.-J, Finger LH, Oliveira JC. A, Ackermann L. Angew. Chem. Int. Ed. 2019; 58: 6342
    • 5c Bettadapur KR, Kapanaiah R, Lanke V, Prabhu KR. J. Org. Chem. 2018; 83: 1810
    • 5d Biswas A, Giri D, Das D, De A, Patra SK, Samanta R. J. Org. Chem. 2017; 82: 10989
    • 5e Wang L, Yu Y, Yang M, Kuai C, Cai D, Yu J, Cui X. Adv. Synth. Catal. 2017; 359: 3818
    • 5f Li S, Wang C, Lin H, Zhang X, Dong L. Org. Lett. 2015; 17: 3018
  • 6 Qian Z.-C, Zhou J, Li B, Shi B.-F. Synlett 2014; 25: 1036
  • 7 Martínez ÁM, Echavarren J, Alonso I, Rodríguez N, Arrayás RG, Carretero JC. Chem. Sci. 2015; 6: 5802
  • 8 Xu X, Zhao H, Xu J, Chen C, Pan Y, Luo Z, Zhang Z, Li H, Xu L. Org. Lett. 2018; 20: 3843
  • 9 Wu S, Wang Z, Bao Y, Chen C, Liu K, Zhu B. Chem. Commun. 2020; 56: 4408
    • 10a Chrzanowska M, Grajewska A, Rozwadowska MD. Chem. Rev. 2016; 116: 12369
    • 10b Froidevaux V, Negrell C, Caillol S, Pascault J.-P, Boutevin B. Chem. Rev. 2016; 116: 14181
    • 10c Mancuso R, Della Ca’ N, Veltri L, Ziccarelli I, Gabriele B. Catalysts 2019; 9: 610
    • 10d Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Chem. Rev. 2019; 119: 1221
    • 10e Peng J.-B, Wu F.-P, Wu X.-F. Chem. Rev. 2019; 119: 2090
    • 11a Li P, Zhao J, Xia C, Li F. Org. Lett. 2014; 16: 5992
    • 11b Zhao J, Li P, Xia C, Li F. RSC Adv. 2015; 5: 32835
    • 11c Shi L, Zhong X, She H, Lei Z, Li F. Chem. Commun. 2015; 51: 7136
    • 11d Li P, Zhao J, Shi L, Wang J, Shi X, Li F. Nat. Commun. 2018; 9: 1972
  • 12 Li W, Yin H, Wen L, Cui J, Wang D. Acta Crystallogr., Sect. E 2009; 65: 112
  • 13 CCDC 2017327 (3f) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 14a Simmons EM, Hartwig JF. Angew. Chem. Int. Ed. 2012; 51: 3066
    • 14b Shin S, Kang D, Jeon WH, Lee PH. Beilstein J. Org. Chem. 2014; 10: 1220
    • 14c Gao B, Liu S, Lan Y, Huang H. Organometallics 2016; 35: 1480
  • 15 The structures of compounds 5 and 6 were confirmed on the basis of their NMR data: the CH3 and CF3 signals at the para-position of the phenyl at the 8-position of isoquinolines 5 and 6 appear at d 1.934 and –62.97 ppm, respectively. These obvious upfield shifts are caused by the substantial shielding effect of the phenyl ring in the directing group.
    • 16a Tseng M, Ke J, Pai C, Wang S, Huang W. Polyhedron 2006; 25: 2160
    • 16b Boutadla Y, Davies DL, Jones RC, Singh K. Chem. Eur. J. 2011; 17: 3438