Skip to main content
Log in

Fabricating a g-C3N4/CuO heterostructure with improved catalytic activity on the multicomponent synthesis of pyrimidoindazoles

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

A series of fluorescence-containing indazole-fused ring systems were made with the support of g-C3N4/CuO as a catalyst via non-conventional (microwave) method. We have synthesized g-C3N4/CuO nanocomposites by mechanochemical process; further, its morphology and composition were studied using various instrumental techniques like Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), and transmission electron microscopy (TEM). Also, we have synthesized pyrimido[1, 2-b] indazole-4-yl methanol motifs without any solvent in single-step methodology utilizing microwave irradiation. The pyrimido[1, 2-b] indazole-4-yl methanol motifs were optimized using response surface methodology (RSM). This preparation was effortlessly accessible, and the overview of the substrates was authorized. The pyrimidoindazole core structures exhibit the most remarkable photo physical properties. Most of the pyrimidoindazole scaffold appears in solvatochromism and excited with blue–green fluorescence shift while using ethyl acetate as solvent. This result indicates that synthesized pyrimidoindazole core motifs have prodigious potential as fluorophores which will help us to study several applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Scheme 3
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ong, W.J., Tan, L.L., Ng, Y.H., Yong, S.T., Chai, S.P.: Graphitic carbon nitride (g-C3N4)-based photo catalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability. Chem. Rev. 116(12), 7159–7329 (2016)

    CAS  Google Scholar 

  2. Dong, G., Zhang, Y., Pan, Q., Qiu, J.A.: fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties. J. Photochem. Photobiol C. 20, 33–50 (2014)

    CAS  Google Scholar 

  3. Patnaik, S., Martha, S., Parida, K.M.: An overview of the structural, textural and morphological modulations of gC3N4 towards photocatalytic hydrogen production. RSC Adv. 6(52), 46929–46951 (2016)

    CAS  Google Scholar 

  4. Patnaik, S., Martha, S., Acharya, S., Parida, K.M.: An overview of the modification of gC3N4 with high carbon containing materials for photocatalytic applications. Inorg. Chem. Front. 3(3), 336–347 (2016)

    CAS  Google Scholar 

  5. Zhang, Y., Qi, Y., Ulrich, S., Barboiu, M., Ramström, O.: Dynamic covalent polymers for biomedical applications. Mater. Chem. Front. 4(2), 489–506 (2020)

    CAS  Google Scholar 

  6. Wang, Y., Di, Y., Antonietti, M., Li, H., Chen, X., Wang, X.: Excellent visible-light photocatalysis of fluorinated polymeric carbon nitride solids. Chem. Mater. 22(18), 5119–5121 (2010)

    CAS  Google Scholar 

  7. Williams, D.R., Shah, A.A.: Total synthesis of (+)-ileabethoxazole via an iron-mediated Pauson-Khand [2+2+1] carbocyclization. J. Am. Chem. Soc. 136(24), 8829–8836 (2014)

    CAS  Google Scholar 

  8. Yu, J., Wang, S., Low, J., Xiao, W.: Enhanced photocatalytic performance of direct Z-scheme gC3N4–TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys. Chem. Chem. Phys. 15(39), 16883–16890 (2013)

    CAS  Google Scholar 

  9. Yan, S.C., Li, Z.S., Zou, Z.G.: Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25(17), 10397–10401 (2009)

    CAS  Google Scholar 

  10. Kim, H.C., Huh, S., Kim, S.J., Kim, Y.: Selective carbon dioxide sorption and heterogeneous catalysis by a new 3D Zn-MOF with nitrogen-rich 1D channels. Sci. Rep. 7(1), 1–2 (2017)

    Google Scholar 

  11. Ma, T.Y., Dai, S., Jaroniec, M., Qiao, S.Z.: Graphitic carbon nitride nanosheet–carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew. Chem. Int. Ed. 53(28), 7281–7285 (2014)

    CAS  Google Scholar 

  12. Ong, W.J., Putri, L.K., Tan, Y.C., Tan, L.L., Li, N., Ng, Y.H., Wen, X., Chai, S.P.: Unravelling charge carrier dynamics in protonated g-C3-N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction: a combined experimental and first-principles DFT study. Nano Res. 10(5), 1673–1696 (2017)

    CAS  Google Scholar 

  13. Das, A., Anbu, N., Mostakim, S.K., Dhakshinamoorthy, A., Biswas, S.: A functionalized UiO-66 MOF for turn-on fluorescence sensing of superoxide in water and efficient catalysis for Knoevenagel condensation. Dalton Trans. 48(46), 17371–17380 (2019)

    CAS  Google Scholar 

  14. Shaymaa, A.R., Rajagopalan, R., Subramaniyam, C., Tai, Z., Xian, J., Wang, X., Dou, S.X., Cheng, Z.: NiFe2O4 nanoparticles coated on 3D graphene capsule as electrode for advanced energy storage applications. Dalton Trans. 47(39), 14052–14059 (2018)

    Google Scholar 

  15. Zhou, T., Zhang, G., Zhang, H., Yang, H., Ma, P., Li, X., Qiu, X., Liu, G.: Highly efficient visible-light-driven photocatalytic degradation of rhodamine B by a novel Z-scheme Ag3PO4/MIL-101/NiFe2O4 composite. Catal. Sci. Technol. 8(9), 2402–2416 (2018)

    CAS  Google Scholar 

  16. Hu, S., Ma, L., You, J., Li, F., Fan, Z., Lu, G., Liu, D., Gui, J.: Enhanced visible light photocatalytic performance of g-C3N4 photocatalysts co-doped with iron and phosphorus. Appl. Surf. Sci. 311, 164–171 (2014)

    CAS  Google Scholar 

  17. Chen, X., Zhang, J., Fu, X., Antonietti, M., Wang, X.: Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light. J. Am. Chem. Soc. 131(33), 11658–11659 (2009)

    CAS  Google Scholar 

  18. Wang, Y., Zhao, S., Zhang, Y., Fang, J., Chen, W., Yuan, S., Zhou, Y.: Facile synthesis of self-assembled g-C3N4 with abundant nitrogen defects for photocatalytic hydrogen evolution. ACS Sustain. Chem. Eng. 6(8), 10200–10210 (2018)

    CAS  Google Scholar 

  19. Chen, S., Hu, Y., Meng, S., Fu, X.: Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3. Appl. Catal. B Environ. 150, 564–573 (2014)

    Google Scholar 

  20. Xu, J., Wang, G., Fan, J., Liu, B., Cao, S., Yu, J.: g-C3N4 modified TiO2 nanosheets with enhanced photoelectric conversion efficiency in dye-sensitized solar cells. J. Power Sources 274, 77–84 (2015)

    CAS  Google Scholar 

  21. Bai, X., Wang, L., Wang, Y., Yao, W., Zhu, Y.: Enhanced oxidation ability of g-C3N4 photocatalyst via C60 modification. Appl. Catal. B Environ. 152, 262–270 (2014)

    Google Scholar 

  22. He, Y., Wang, Y., Zhang, L., Teng, B., Fan, M.: High-efficiency conversion of CO2 to fuel over ZnO/g-C3N4 photocatalyst. Appl. Catal. B Environ. 168, 1–8 (2015)

    Google Scholar 

  23. Wei, H., McMaster, W.A., Tan, J.Z., Cao, L., Chen, D., Caruso, R.A.: Mesoporous TiO2/g-C3N4 microspheres with enhanced visible-light photocatalytic activity. J. Phys. Chem. C 121(40), 22114–22122 (2017)

    CAS  Google Scholar 

  24. Yan, Y., Li, C., Wu, Y., Gao, J., Zhang, Q.: From isolated Ti-oxo clusters to infinite Ti-oxo chains and sheets: recent advances in photoactive Ti-based MOFs. J. Mater. Chem. A. (2020). https://doi.org/10.1039/D0TA03749D

    Article  Google Scholar 

  25. Li, C., Xu, H., Gao, J., Du, W., Shangguan, L., Zhang, X., Lin, R.B., Wu, H., Zhou, W., Liu, X., Yao, J.: Tunable titanium metal–organic frameworks with infinite 1D Ti–O rods for efficient visible-light-driven photocatalytic H2 evolution. J. Mater. Chem. A 7(19), 11928–119332019 (2019)

    CAS  Google Scholar 

  26. Ugi, I., Heck, S.: The multicomponent reactions and their libraries for natural and preparative chemistry. Comb. Chem. High Throughput Screen. 4(1), 1–34 (2001)

    CAS  Google Scholar 

  27. Ruijter, E., Scheffelaar, R., Orru, R.V.: Multicomponent reaction design in the quest for molecular complexity and diversity. Angew. Chem. Int. Ed. 50(28), 6234–6246 (2011)

    CAS  Google Scholar 

  28. Toure, B.B., Hall, D.G.: Natural product synthesis using multicomponent reaction strategies. Chem. Rev. 109(9), 4439–4486 (2009)

    CAS  Google Scholar 

  29. Isambert, N., Duque, M.D., Plaquevent, J.C., Genisson, Y., Rodriguez, J., Constantieux, T.: Multicomponent reactions and ionic liquids: a perfect synergy for eco-compatible heterocyclic synthesis. Chem. Soc. Rev. 40(3), 1347–1357 (2011)

    CAS  Google Scholar 

  30. Singh, M.S., Chowdhury, S.: Recent developments in solvent-free multicomponent reactions: a perfect synergy for eco-compatible organic synthesis. RSC Adv. 2(11), 4547–4592 (2012)

    CAS  Google Scholar 

  31. Bebbington, M.W.: Natural product analogues: towards a blueprint for analogue-focused synthesis. Chem. Soc. Rev. 46(16), 5059–5109 (2017)

    CAS  Google Scholar 

  32. Giustiniano, M., Basso, A., Mercalli, V., Massarotti, A., Novellino, E., Tron, G.C., Zhu, J.: To each his own: isonitriles for all flavors. Functionalized isocyanides as valuable tools in organic synthesis. Chem. Soc. Rev. 46(5), 1295–1357 (2017)

    CAS  Google Scholar 

  33. Kim, J., Movassaghi, M.: Biogenetically-inspired total synthesis of epidithiodiketopiperazines and related alkaloids. Acc Chem Res. 48(4), 1159–1171 (2015)

    CAS  Google Scholar 

  34. Speck, K., Magauer, T.: The chemistry of isoindole natural products. Beilstein J. Org. Chem. 9(1), 2048–2078 (2013)

    Google Scholar 

  35. Molina, P., Arques, A., Vinader, M.V.: Intramolecular trapping of a phosphazide by an imine: formation of 2, 3-diamino-2H-indazole derivatives from o-azidobenzaldimines and tertiary phosphines. Tetrahedron Lett. 30(45), 6237–6240 (1989)

    CAS  Google Scholar 

  36. Brown, D.J.: Chemistry of Heterocyclic Compounds. Wiley-Interscience, New York (1994)

    Google Scholar 

  37. Li, L., Xu, H., Dai, L., Xi, J., Gao, L., Rong, L.: An efficient metal-free cascade process for the synthesis of 4-arylpyrimido [1,2-b] indazole-3-carbonitrile derivatives. Tetrahedron 73(36), 5358–5365 (2017)

    CAS  Google Scholar 

  38. Yakaiah, T., Lingaiah, B.P., Narsaiah, B., Shireesha, B., Kumar, B.A., Gururaj, S., Parthasarathy, T., Sridhar, B.: Synthesis and structure–activity relationships of novel pyrimido [1, 2-b] indazoles as potential anticancer agents against A-549 cell lines. Bioorg. Med. Chem. Lett. 17(12), 3445–3453 (2007)

    CAS  Google Scholar 

  39. Shinde, V.V., Jeong, Y.T.: Organic-base-catalyzed diversity-oriented synthesis of novel pyrimido [1, 2-b] indazole-3-carbonitrile. Tetrahedron 72(29), 4377–4382 (2016)

    CAS  Google Scholar 

  40. Liu, H., Zhang, Z.G., He, H.W., Wang, X.X., Zhang, J., Zhang, Q.Q., Tong, Y.F., Liu, H.L., Ramakrishna, S., Yan, S.Y., Long, Y.Z.: One-step synthesis heterostructured g-C3N4/TiO2 composite for rapid degradation of pollutants in utilizing visible light. Nanomaterials 8(10), 842 (2018)

    Google Scholar 

  41. Abbiati, G., Rossi, E.: Silver and gold-catalyzed multicomponent reactions. Beilstein J. Org. Chem. 10(1), 481–513 (2014)

    Google Scholar 

  42. Shi, Z., Zhang, C., Tang, C., Jiao, N.: Recent advances in transition-metal catalyzed reactions using molecular oxygen as the oxidant. Chem. Soc. Rev. 41(8), 3381–3430 (2012)

    CAS  Google Scholar 

  43. Wang, J., Cong, J., Xu, H., Wang, J., Liu, H., Liang, M., Gao, J., Ni, Q., Yao, J.: Facile gel-based morphological control of Ag/g-C3N4 porous nanofibers for photocatalytic hydrogen generation. ACS Sustain. Chem. Eng. 5(11), 10633–10639 (2017)

    CAS  Google Scholar 

  44. Jiang, T., Zhang, H., Ding, Y., Zou, S., Chang, R., Huang, H.: Transition-metal-catalyzed reactions involving reductive elimination between dative ligands and covalent ligands. Chem. Soc. Rev. 49(5), 1487–1516 (2020)

    CAS  Google Scholar 

  45. Heidari, M.R., Varma, R.S., Ahmadian, M., Pourkhosravani, M., Asadzadeh, S.N., Karimi, P., Khatami, M.: Photo-fenton like catalyst system: activated carbon/CoFe2O4 nanocomposite for reactive dye removal from textile wastewater. Appl. Sci. 9(5), 963 (2019)

    CAS  Google Scholar 

  46. Devipriya, D., Roopan, S.M.: Cissus quadrangularis mediated ecofriendly synthesis of copper oxide nanoparticles and its antifungal studies against Aspergillus niger, Aspergillus flavus. Mater. Sci. Eng. C. 80, 38–44 (2017)

    CAS  Google Scholar 

  47. Shi, H., Chen, G., Zhang, C., Zou, Z.: Polymeric g-C3N4 coupled with NaNbO3 nanowires toward enhanced photocatalytic reduction of CO2 into renewable fuel. ACS Catal. 4(10), 3637–3643 (2014)

    CAS  Google Scholar 

  48. Lotsch, B.V., Schnick, W.: From triazines to heptazines: novel nonmetal tricyanomelaminates as precursors for graphitic carbon nitride materials. Chem. Mater. 18(7), 1891–1900 (2006)

    CAS  Google Scholar 

  49. Nayak, S., Parida, K.M.: Dynamics of charge-transfer behavior in a plasmon-induced quasi-type-II p–n/n–n dual heterojunction in Ag@ Ag3PO4/g-C3N4/NiFe LDH nanocomposites for photocatalytic Cr(VI) reduction and phenol oxidation. ACS Omega 3(7), 7324–7343 (2018)

    CAS  Google Scholar 

  50. Babu, P., Mohanty, S., Naik, B., Parida, K.: Synergistic effects of boron and sulfur Co-doping into graphitic carbon nitride framework for enhanced photocatalytic activity in visible light driven hydrogen generation. ACS Appl. Energy Mater. 1(11), 5936–5947 (2018)

    Google Scholar 

  51. Hwang, S., Lee, S., Yu, J.S.: Template-directed synthesis of highly ordered nanoporous graphitic carbon nitride through polymerization of cyanamide. Appl. Surf. Sci. 253(13), 5656–5659 (2007)

    CAS  Google Scholar 

  52. Sahoo, D.P., Patnaik, S., Rath, D., Nanda, B., Parida, K.: Cu@CuO promoted g-C3N4/MCM-41: an efficient photocatalyst with tunable valence transition for visible light induced hydrogen generation. RSC Adv. 6(113), 112602–112613 (2016)

    CAS  Google Scholar 

  53. Zhou, Q., Li, T.T., Qian, J., Hu, Y., Guo, F., Zheng, Y.Q.: Self-supported hierarchical CuOx@Co3O4 heterostructures as efficient bifunctional electrocatalysts for water splitting. J. Mater. Chem. A. 6(29), 14431–14439 (2018)

    CAS  Google Scholar 

  54. Shi, Y., Yang, Z., Liu, Y., Yu, J., Wang, F., Tong, J., Su, B., Wang, Q.: Fabricating a gC3N4/CuOx heterostructure with tunable valence transition for enhanced photocatalytic activity. RSC Adv. 6(46), 39774–39783 (2016)

    CAS  Google Scholar 

  55. Xie, X., He, Z.Z., Qi, X.D., Yang, J.H., Lei, Y.Z., Wang, Y.: Achieving high performance poly (vinylidene fluoride) dielectric composites via in situ polymerization of polypyrrole nanoparticles on hydroxylated BaTiO3 particles. Chem. Sci. 10(35), 8224–8235 (2019)

    CAS  Google Scholar 

  56. Kinik, F.P., Altintas, C., Balci, V., Koyuturk, B., Uzun, A., Keskin, S.: [BMIM][PF6] incorporation doubles CO2 selectivity of ZIF-8: elucidation of interactions and their consequences on performance. ACS Appl. Mater. Interfaces. 8(45), 30992–31005 (2016)

    CAS  Google Scholar 

  57. Adkins, E.M., Miller, J.H.: Towards a taxonomy of topology for polynuclear aromatic hydrocarbons: linking electronic and molecular structure. Phys. Chem. Chem. Phys. 19(41), 28458–28469 (2017)

    CAS  Google Scholar 

  58. Nayak, S., Swain, G., Parida, K.: Enhanced photocatalytic activities of RhB degradation and H2 evolution from in situ formation of the electrostatic heterostructure MoS2/NiFe LDH nanocomposite through the Z-Scheme mechanism via p–n heterojunctions. ACS Appl. Mater. Interfaces 11(23), 20923–20942 (2019)

    CAS  Google Scholar 

  59. Patnaik, S., Swain, G., Parida, K.M.: Highly efficient charge transfer through a double Z-scheme mechanism by a Cu-promoted MoO3/gC3N4 hybrid nanocomposite with superior electrochemical and photocatalytic performance. Nanoscale 10(13), 5950–5964 (2018)

    CAS  Google Scholar 

  60. Nayak, S., Parida, K.: Deciphering Z-scheme charge transfer dynamics in heterostructure NiFe-LDH/NrGO/ g-C3N4 nanocomposite for photocatalytic pollutant removal and water splitting reactions. Sci. Rep. 9, 2458–2481 (2019)

    Google Scholar 

  61. Sheth, S., Baron, A., Herrero, C., Vauzeilles, B., Aukauloo, A., Leibl, W.: Light-induced tryptophan radical generation in a click modular assembly of a sensitiser-tryptophan residue. Photochem. Photobiol. Sci. 12(6), 1074–1078 (2013)

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the organization of the Vellore Institute of Technology for giving all the facilities to succeed in this work. Devi Priya thank CSIR-SRF (09/844(0052)/2018 EMR-I) for providing grant. Also, we thank Prof. G. Madhumitha for Microwave support under her DST Grant (No. SB/FT/CS–113/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selvaraj Mohana Roopan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 11450 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priya, D.D., Khan, M.M.R. & Roopan, S.M. Fabricating a g-C3N4/CuO heterostructure with improved catalytic activity on the multicomponent synthesis of pyrimidoindazoles. J Nanostruct Chem 10, 289–308 (2020). https://doi.org/10.1007/s40097-020-00350-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-020-00350-0

Keywords

Navigation