Skip to main content
Log in

Aerodynamic Design of Pusher Propeller for a Promising Rotorcraft

  • AERO- AND GAS-DYNAMICS OF FLIGHT VEHICLES AND THEIR ENGINES
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

A method based on the complex application of the actuator disk and finite-blade vortex theories is presented for aerodynamic design of the pusher propeller of a promising rotorcraft for vertical takeoff and landing. The software package was created that allows us to select the propeller parameters, create its 3D model and calculate aerodynamic characteristics in semi-automatic mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Mikheev, S.V., Puti sovershenstvovaniya vintokrilykh letatel’nykh apparatov (Ways to Improve the Rotorcraft Performance), Moscow: MAI, 2006.

    Google Scholar 

  2. Tischehko, M.N. and Artamonov, B.L., Problems of Increase of Cruiser Speed of Flight of the Helicopter and Ways of its Decision, Trudy MAI, issue 55, 2012, URL:http://trudymai.ru/eng/published.php?ID=30115.

    Google Scholar 

  3. Ignatkin, Yu.M., Makeev, P.V., and Shomov, A.I., Aerodinamicheskie skhemy vintokrylykh letatelnykh apparatov (Aerodynamic Schemes of Rotorcraft), Moscow: MAI, 2018.

    Google Scholar 

  4. Nikitin, S.O. and Makeev, P.V., A Project of the "Synchropter" Type High-Speed Helicopter with Pushing Air Propeller, Vestnik MAI, 2019, vol. 26, no. 1, pp. 82–95.

    Google Scholar 

  5. S-97. Demonstrator Flight Maneuvers, URL: https://www.lockheedmartin.com/en-us/products/s-97-raider-helicopter.html.

  6. Airbus Clean Sky. The Future of High-Speed Rotorcraft, URL: https://www.airbus.com/innovation/clean-sky-2.html.

  7. Gainutdinov, V.G. and Levshonkov, N.V., Design of Highly Efficient Propeller Blades, Izv. Vuz. Av. Tekhnika, 2013, vol. 56, no. 2, pp. 3–7 [Russian Aeronautics (Engl. Transl.), vol. 56, no. 2, pp. 111–116].

    Google Scholar 

  8. Vetchinkin, V.P. and Polyakhov, N.N., Teoriya i raschet vozdushnogo grebnogo vinta (Theory and Calculation of an Air Propeller), Moscow: Oborongiz, 1940.

    Google Scholar 

  9. Kravets, A.S., Kharakteristiki vozduzhnykh vintov (Propeller Parameters), Moscow: Oborongiz, 1941.

    Google Scholar 

  10. Aleksandrov, V.L., Vozdushnye vinty (Propellers), Moscow: Oboringiz, 1951.

    Google Scholar 

  11. Shaidakov, V.I., Aerodinamicheskii raschet vertoleta (Aerodynamic Calculation of a Helicopter), Moscow: MAI, 1988.

    Google Scholar 

  12. Shaidakov, V.I. and Maslov, A.D., Aerodinamicheskoe proektirovanie lopastei vozdushnogo vinta (Aerodynamic Design of Propeller Blades), Moscow: MAI, 1995.

    Google Scholar 

  13. Yur’ev, B.N., Aerodinamicheskii raschet vertoletov (Aerodynamic Analysis of Helicopters), Moscow: Oborongiz, 1956.

    Google Scholar 

  14. Ignatkin, Yu.M., Makeev, P.V., and Shomov, A.I., Computational Modeling of Applied Tasks of Helicopter Aerodynamics Based on Non-Linear Vortical Model of a Rotor, Trudy MAI, issue 87, 2016, URL: http://trudymai.ru/eng/published.php?ID=65636.

    Google Scholar 

  15. Ignatkin, Yu.M., Makeev, P.V., Grevtsov, B.S., and Shomov, A.I., A Nonlinear Blade Vortex Propeller Theory and its Applications to Estimate Aerodynamic Characteristics for Helicopter Main Rotor and Anti-Torque Rotor, Vestnik MAI, 2009, vol. 16, no. 5, pp. 24–31.

    Google Scholar 

  16. Ignatkin, Yu.M. and Konstantinov, S.G., Researches Aerodynamic Characteristics of a Profile and Blade Tips Helicopter Rotor Using CFD Methods, Trudy MAI, issue 57, 2012, URL: http://trudymai.ru/eng/published.php?ID=30874.

    Google Scholar 

  17. Garipova, L.I., Batrakov, A.S., Kusyumov, A.N., Mikhailov, S.A., and Barakos, G.N., Estimates of Hover Aerodynamics Performance of Rotor Model, Izv. Vuz. Av. Tekhnika, 2014, vol. 57, no. 3, pp. 7–13 [Russian Aeronautics (Engl. Transl.), vol. 57, no. 3, pp. 223–231].

    Google Scholar 

  18. Min, B.-Y., Wake, B.E., Bowles, P.O., Matalanis, C.G., and Moffitt, B., Propeller Analysis Using a Hybrid Navier–Stokes/Free-Wake Method, 41th European Rotorcraft Forum, Munich, Germany, 2015, URL: https://pdfs.semanticscholar.org/d788/a7c091592c5a046f4c29f01955fc27205e88.pdf.

    Google Scholar 

  19. Ignatkin, Yu.M., Konstantinov, S.G., Makeev, P.V., Shomov, A.I., Computational Modeling of Main Rotor’s Work at Horizontal Flight Regime on the Base of Non-linear Blade Vortical Model and RANS Method with Spallart–Allmaras Turbulence Model, Polet, 2018, no. 5, pp. 48–60.

    Google Scholar 

  20. Tischehko, M.N., Vybor parametrov vertoleta na nachal’noi stadii proektirovaniya (The Choice of Parameters of the Helicopter at the Initial Design Stage), Moscow: MAI, 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Shomov.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaidakov, V.I., Ignatkin, Y.M., Shomov, A.I. et al. Aerodynamic Design of Pusher Propeller for a Promising Rotorcraft. Russ. Aeronaut. 63, 283–289 (2020). https://doi.org/10.3103/S1068799820020130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799820020130

Keywords

Navigation