Skip to main content
Log in

Effect of Mass Flux Ratio above the Submerged Part of a Nozzle with a Contoured Inlet on the Discharge Coefficient

  • AIRCRAFT AND ROCKET ENGINE THEORY
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

An Erratum to this article was published on 01 September 2020

This article has been updated

Abstract

The up-to-date methods of computational fluid dynamics (CFD) were employed to study the effect of mass flux ratio above the submerged part of a solid rocket engine nozzle with a contoured inlet on the discharge coefficient. The results are given in correlation with the inlet geometry and nozzle submergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Change history

REFERENCES

  1. Erokhin, B.T., Teoriya i proektirovanie raketnykh dvigatelei (Theory and Design of Rocket Engines), St. Petersburg: Lan’, 2015, 680 p.

    Google Scholar 

  2. Lavrukhin, G.N., Aerogazodinamika reaktivnykh sopel (Aero and Gas Dynamics of Jet Nozzles), vol. 1, Vnutrennie kharakteristiki sopel (Internal Characteristics of Nozzles), Moscow: Nauka. Fizmatlit, 2003.

    Google Scholar 

  3. Gubertov, A.M., Mironov, V.V., Borisov, D.M., et al., Gazodinamicheskie i teplofizicheskie protsessy v raketnykh dvigatelyakh tverdogo topliva (Gasodynamic and Thermophysical Processes in Solid-Propellant Rocket Engines), Koroteev, A.S., Ed., Moscow: Mashinostroenie, 2004.

    Google Scholar 

  4. Shishkov, A.A., Panin, S.D., and Rumyantsev, B.V., Rabochie processy v raketnykh dvigatelyakh tverdogo topliva: Spravochnik (Operating Processes in Solid Rocket Engines: Handbook), Moscow: Mashinostroenie, 1988.

    Google Scholar 

  5. Milekhin, Yu.M., Klyuchnikov, A.N., Burskii, G.V., and Lavrov, G.S., Energetika raketnykh dvigatelei na tverdom toplive (Power Engineering of Solid Rocket Engines), Moscow: Nauka, 2013.

    Google Scholar 

  6. Sabirzyanov, A.N. and Kirillova, A.N., Multi-Factor Influence of Nozzle Submergence on Discharge Coefficient, Vestnik Kontserna VKO "Almaz–Antei", 2018, no. 1 (24), pp. 43–50.

    Google Scholar 

  7. Sabirzyanov, A.N., Glazunov, A.I., Kirillova, A.N., and Titov, K.S., Simulation of a Rocket Engine Nozzle Discharge Coefficient, Izv. Vuz. Av. Tekhnika, 2018, vol. 61, no. 2, pp. 105–111 [Russian Aeronautics (Engl. Transl.), vol. 61, no. 2, pp. 257–264].

    Google Scholar 

  8. Alemasov, V.E., Dregalin, A.F., and Tishin, A.P., Teoriya raketnykh dvigatelei (Theory of Rocket Engines), Moscow: Mashinostroenie, 1989.

    Google Scholar 

  9. Dobrovol’skii, M.V., Zhidkostnye raketnye dvigateli. Osnovy proektirovaniya (Liquid Propellant Rocket Engines. Fundamentals of Design), Yagodnikov, D.A., Ed., Moscow: Izd. MGTU im. N.E. Baumana, 2005.

    Google Scholar 

  10. Nikolaev, Yu.V., Panin, S.D., Solomonov, Yu.S., and Sychev, M.P., Osnovy proektirovaniya tverdotoplivnykh upravlyaemykh ballistichekikh raket (Design Fundamentals of Guided Ballistic Solid Rockets), Moscow: MGTU im. N.E. Baumana, 2000.

    Google Scholar 

Download references

ACKNOWLEDGEMENTS

This work was supported by the Russian Foundation for Basic Research, grant no. 19-38-90277.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Sabirzyanov.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabirzyanov, A.N., Kirillova, A.N. Effect of Mass Flux Ratio above the Submerged Part of a Nozzle with a Contoured Inlet on the Discharge Coefficient. Russ. Aeronaut. 63, 310–316 (2020). https://doi.org/10.3103/S1068799820020178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799820020178

Keywords

Navigation