Skip to main content
Log in

In situ Friction-Induced Copper Nanoparticles at the Sliding Interface Between Steel Tribo-Pairs and their Tribological Properties

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

This work investigates in situ friction-generated copper nanoparticles at the sliding in the precursor solution of copper formate tetrahydrate and octylamine, which induced by frictional heat, it can effectively mitigate wear while slightly reducing friction coefficient. The frictional heat between tribo-pairs accelerated the decomposition of the precursor into in situ generated copper nanoparticles, as indicated by black stripe regions on the worn surface. This study opened a new strategy to achieve low friction and wear through the thermal decomposition of the liquid lubricants during sliding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Waddad, Y., Magnier, V., Dufrénoy, P., De Saxcé, G.: Heat partition and surface temperature in sliding contact systems of rough surfaces. Int. J. Heat Mass Transf. 137, 1167–1182 (2019)

    Article  Google Scholar 

  2. Wang, M., Wang, X., Liu, J., Wei, J., Shen, Z., Wang, Y.: 3-Dimensional ink printing of friction-reducing surface textures from copper nanoparticles. Surf. Coat. Technol. 364, 57–62 (2019)

    Article  Google Scholar 

  3. Bode, K., Ostermeyer, G.P.: A comprehensive approach for the simulation of heat and heat-induced phenomena in friction materials. Wear 311(1–2), 47–56 (2014)

    Article  CAS  Google Scholar 

  4. Samyn, P., Schoukens, G., Van Driessche, I., Van Craenenbroeck, J., Verpoort, F.: Softening and melting mechanisms of polyamides interfering with sliding stability under adhesive conditions. Polymer 47(14), 5050–5065 (2006)

    Article  CAS  Google Scholar 

  5. Umar, M., Mufti, R.A., Khurram, M.: Effect of flash temperature on engine valve train friction. Tribol. Int. 118, 170–179 (2018)

    Article  Google Scholar 

  6. Handa, K., Kimura, Y., Mishima, Y.: Surface cracks initiation on carbon steel railway wheels under concurrent load of continuous rolling contact and cyclic frictional heat. Wear 268(1–2), 50–58 (2010)

    Article  CAS  Google Scholar 

  7. Asnida, M., Hisham, S., Awang, N.W., Amirruddin, A.K., Noor, M.M., Kadirgama, K., Ramasamy, D., Najafi, G., Tarlochan, F.: Copper (II) oxide nanoparticles as additve in engine oil to increase the durability of piston-liner contact. Fuel 212, 656–667 (2018)

    Article  CAS  Google Scholar 

  8. Guzman Borda, F.L., de Oliveira, S.J.R., Monteiro Lazaro, L.M.S., Kalab Leiróz, A.J.: Experimental investigation of the tribological behavior of lubricants with additive containing copper nanoparticles. Tribol. Int 117, 52–58 (2018)

  9. Rajmohan, T., Palanikumar, K., Arumugam, S.: Synthesis and characterization of sintered hybrid aluminium matrix composites reinforced with nanocopper oxide particles and microsilicon carbide particles. Compos. B Eng. 59, 43–49 (2014)

    Article  CAS  Google Scholar 

  10. Harandi, M.H., Alimoradi, F., Rowshan, G., Faghihi, M., Keivani, M., Abadyan, M.: Morphological and mechanical properties of styrene butadiene rubber/nano copper nanocomposites. Results Phys. 7, 338–344 (2017)

    Article  Google Scholar 

  11. Padgurskas, J., Rukuiza, R., Prosyčevas, I., Kreivaitis, R.: Tribological properties of lubricant additives of Fe, Cu and Co nanoparticles. Tribol. Int. 60, 224–232 (2013)

    Article  CAS  Google Scholar 

  12. Akar, N., Asar, B., Dizge, N., Koyuncu, I.: Investigation of characterization and biofouling properties of PES membrane containing selenium and copper nanoparticles. J. Membr. Sci. 437, 216–226 (2013)

    Article  CAS  Google Scholar 

  13. Wen, Y., Huang, W., Wang, B., Fan, J., Gao, Z., Yin, L.: Synthesis of Cu nanoparticles for large-scale preparation. Mater. Sci. Eng. B 177(8), 619–624 (2012)

    Article  CAS  Google Scholar 

  14. Xu, B., Wang, B., Zhang, C., Zhou, J.: Synthesis and light-heat conversion performance of hybrid particles decorated MWCNTs/paraffin phase change materials. Thermochim. Acta 652, 77–84 (2017)

    Article  CAS  Google Scholar 

  15. Xu, B., Cao, X., Zhu, B., Lou, B., Ma, X., Li, X., Wang, Y.: Facile synthesis and shape evolution of oleic acid decorated Cu 2 O microcrystals. Appl. Surf. Sci. 355, 153–159 (2015)

    Article  CAS  Google Scholar 

  16. Sutter, G., Ranc, N.: Flash temperature measurement during dry friction process at high sliding speed. Wear 268(11–12), 1237–1242 (2010)

    Article  CAS  Google Scholar 

  17. Kalin, M., Vizintin, J.: High temperature phase transformations under fretting conditions. Wear 249(3–4), 172–181 (2001)

    Article  CAS  Google Scholar 

  18. Rodríguezipoll, M., Tomala, A.M., Pirker, L., Remškar, M.: In-situ formation of MoS2 and WS2 tribofilms by the synergy between transition metal oxide nanoparticles and sulphur-containing oil additives. Tribol. Lett. 68(1):1–13 (2020)

  19. Sarno, M., Spina, D., Senatore, A.: One-step nanohybrid synthesis in waste cooking oil, for direct lower environmental impact and stable lubricant formulation. Tribol. Int. 135, 355–367 (2019)

    Article  CAS  Google Scholar 

  20. Alves, S.M., Mello, V.S., Faria, E.A., Camargo, A.P.P.: Nanolubricants developed from tiny CuO nanoparticles. Tribol. Int. 100, 263–271 (2016)

    Article  CAS  Google Scholar 

  21. Jaeger, J.C.: Moving sources of heat and the temperature of sliding contacts. J. Proc. R. Soc. N. S. W. 76, 202 (1942)

    Google Scholar 

  22. Jang, Y.H., Barber, J.R.: Multiscale analysis of moving clusters of microcontacts. Int. J. Heat Mass Transf. 53(19–20), 3817–3822 (2010)

    Article  CAS  Google Scholar 

  23. Tarasov, S., Kolubaev, A., Belyaev, S., Lerner, M., Tepper, F.: Study of friction reduction by nanocopper additives to motor oil. Wear 252(1–2), 63–69 (2002)

    Article  CAS  Google Scholar 

  24. Xu, X.X., Nie, F.L., Wang, Y.B., Zhang, J.X., Zheng, W., Li, L., Zheng, Y.F.: Effective inhibition of the early copper ion burst release with ultra-fine grained copper and single crystal copper for intrauterine device application. Acta Biomater. 8(2), 886–896 (2012)

    Article  CAS  Google Scholar 

  25. Yabuki, A., Arriffin, N., Yanase, M.: Low-temperature synthesis of copper conductive film by thermal decomposition of copper–amine complexes. Thin Solid Films 519(19), 6530–6533 (2011)

    Article  CAS  Google Scholar 

  26. Salavati-Niasari, M., Davar, F., Mir, N.: Synthesis and characterization of metallic copper nanoparticles via thermal decomposition. Polyhedron 27(17), 3514–3518 (2008)

    Article  CAS  Google Scholar 

  27. Hernándezattez, A., González, R., Felgueroso, D., Fernández, J.E., del Fernández, M.R., García, M.A., Peñuelas, I.: Wear prevention behaviour of nanoparticle suspension under extreme pressure conditions. Wear 263(7–12): 1568–1574 (2007)

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (Grant Nos. 51775503, 51201152 and 51965019), the Natural Science Foundation of Jiangxi Province (Grant Nos. 20192BAB206026 and 200202BAB204020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Xu or Ren–hui Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, M., Rong, K., Li, C. et al. In situ Friction-Induced Copper Nanoparticles at the Sliding Interface Between Steel Tribo-Pairs and their Tribological Properties. Tribol Lett 68, 98 (2020). https://doi.org/10.1007/s11249-020-01337-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-020-01337-2

Keywords

Navigation