Skip to main content
Log in

On the \(L_p\)-Brunn–Minkowski and Dimensional Brunn–Minkowski Conjectures for Log-Concave Measures

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We study several of the recent conjectures in regards to the role of symmetry in the inequalities of Brunn–Minkowski type, such as the \(L_p\)-Brunn–Minkowski conjecture of Böröczky, Lutwak, Yang and Zhang, and the Dimensional Brunn–Minkowski conjecture of Gardner and Zvavitch, in a unified framework. We obtain several new results for these conjectures. We show that when \(K\subset L,\) the multiplicative form of the \(L_p\)-Brunn–Minkowski conjecture holds for Lebesgue measure for \(p\ge 1-Cn^{-0.75}\), which improves upon the estimate of Kolesnikov and Milman in the partial case when one body is contained in the other. We also show that the multiplicative version of the \(L_p\)-Brunn–Minkowski conjecture for the standard Gaussian measure holds in the case of sets containing sufficiently large ball (whose radius depends on p). In particular, the Gaussian Log-Brunn–Minkowski conjecture holds when K and L contain \(\sqrt{0.5 (n+1)}B_2^n.\) We formulate an a-priori stronger conjecture for log-concave measures, extending both the \(L_p\)-Brunn–Minkowski conjecture and the Dimensional one, and verify it in the case when the sets are dilates and the measure is Gaussian. We also show that the Log-Brunn–Minkowski conjecture, if verified, would yield this more general family of inequalities. Our results build up on the methods developed by Kolesnikov and Milman as well as Colesanti, Livshyts, Marsiglietti. We furthermore verify that the local version of these conjectures implies the global version in the setting of general measures, and this step uses methods developed recently by Putterman.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borell, C.: Convex set functions in d-space. Period. Math. Hungar. 6(2), 111–136 (1975)

    Article  MathSciNet  Google Scholar 

  2. Böröczky, K.J., Lutwak, E., Yang, D., Zhang, G.: The log-Brunn–Minkowski-inequality. Adv. Math. 231(3–4), 1974–1997 (2012)

    Article  MathSciNet  Google Scholar 

  3. Böröczky, K.J., Lutwak, E., Yang, D., Zhang, G.: The logarithmic Minkowski problem. J. Am. Math. Soc. 26(3), 831–852 (2013)

    Article  MathSciNet  Google Scholar 

  4. Böröczky, K.J., Lutwak, E., Yang, D., Zhang, G.: Affine images of isotropic measures. J. Differ. Geom. 99(3), 407–442 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Brascamp, H., Lieb, E.: On extensions of the Brunn–Minkowski and Prekopa–Leindler theorems, including inequalities for log-concave functions, and with an application to the diffusion equation. J. Funct. Anal. 22(4), 366–389 (1976)

    Article  MathSciNet  Google Scholar 

  6. Chen, S, Huang, Y., Li, Q., Liu, J.: $L_p$-Brunn–Minkowski inequality for $p\in (1-\frac{c}{n^{\frac{3}{2}}},1)$, preprint

  7. Colesanti, A.: From the Brunn–Minkowski inequality to a class of Poincaré type inequalities. Commun. Contemp. Math. 10(5), 765–772 (2008)

    Article  MathSciNet  Google Scholar 

  8. Colesanti, A., Livshyts, G.: Uniqueness of a Smooth Convex Body with a Uniform Cone Volume Measure in the Neighborhood of a Ball, preprint

  9. Colesanti, A., Livshyts, G., Marsiglietti, A.: On the stability of Brunn–Minkowski type inequalities. J. Funct. Anal 273(3), 1120–1139 (2017)

    Article  MathSciNet  Google Scholar 

  10. Cordero-Erausquin, D., Fradelizi, M., Maurey, B.: The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems. J. Funct. Anal. 214(2), 410–427 (2004)

    Article  MathSciNet  Google Scholar 

  11. Evans, L.: Partial Differential Equations, AMS, Graduate Studies in Mathematics. Vol. 19, pp. 749 (2010)

  12. Gardner, R.: The Brunn–Minkowski inequality. Bull. Am. Math. Soc. 39, 355–405 (2002)

    Article  MathSciNet  Google Scholar 

  13. Gardner, R., Zvavitch, A.: Gaussian Brunn–Minkowski-type inequalities. Trans. Am. Math. Soc. 362(10), 5333–5353 (2010)

    Article  Google Scholar 

  14. Hug, D.: Contributions to affine surface area. Manuscr. Math. 91(3), 283–301 (1996)

    Article  MathSciNet  Google Scholar 

  15. Kannan, R., Lovasz, L., Simonovits, M.: Isoperimetric problems for convex bodies and a localization lemma. Discrete Comput. Geom. 13(3–4), 541–559 (1995)

    Article  MathSciNet  Google Scholar 

  16. Kolesnikov, A.V., Livshyts, G.V.: On the Gardner–Zvavitch Conjecture: Symmetry in the Inequalities of the Brunn–Minkowski Type, to appear in Advances in Mathematics

  17. Kolesnikov, A.V., Milman, E.: Brascamp–Lieb-type inequalities on weighted Riemannian manifolds with boundary. J. Geom. Anal. 27(2), 1680–1702 (2017)

    Article  MathSciNet  Google Scholar 

  18. Kolesnikov, A.V., Milman, E.: Sharp poincare-type inequality for the Gaussian measure on the boundary of convex sets. In: Klartag, B., Milman, E. (eds.) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol. 2169, pp. 221–234. Springer, Cham (2017)

    Chapter  Google Scholar 

  19. Kolesnikov, A.V., Milman, E.: Poincaré and Brunn–Minkowski inequalities on the boundary of weighted Riemannian manifolds. Am. J. Math. 140, 1147 (2018)

    Article  Google Scholar 

  20. Kolesnikov, A.V., Milman, E.: Local $L_p$-Brunn–Minkowski inequalities for $p<1$, preprint

  21. Lee, Y., Vempala, S.: Eldan’s Stochastic Localization and the KLS Hyperplane Conjecture: An Improved Lower Bound for Expansion. arXiv:1612.01507

  22. Livshyts, G.V.: Maximal surface area of a convex set in $R^n$ with respect to exponential rotation invariant measures. J. Math. Anal. Appl. 404, 231–238 (2013)

    Article  MathSciNet  Google Scholar 

  23. Livshyts, G.V.: Maximal surface area of a convex set in ${\mathbb{R}}^{n}$ with respect to log concave rotation invariant measures. GAFA Semin. Notes 2116, 355–384 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Livshyts, G.V.: Maximal surface area of a convex polytope in $R^n$ with respect to log-concave rotation invariant measures. Adv. Appl. Math. 70, 54–69 (2015)

    Article  MathSciNet  Google Scholar 

  25. Livshyts, G.V.: An extension of Minkowski’s theorem and its applications to questions about projections for measures. Adv. Math. 356, 106803 (2019)

    Article  MathSciNet  Google Scholar 

  26. Livshyts, G., Marsiglietti, A., Nayar, P., Zvavitch, A.: On the Brunn–Minkowski inequality for general measures with applications to new isoperimetric-type inequalities. Trans. Am. Math. Soc. 369, 8725–8742 (2017)

    Article  MathSciNet  Google Scholar 

  27. Lusternik, L.A.: Die Brunn-Minkowskische Ungleichung für beliebige messbare Mengen. C. R. Acad. Sci. URSS 8, 55–58 (1935)

    MATH  Google Scholar 

  28. Nayar, P., Tkocz, T.: A Note on a Brunn–Minkowski inequality for the Gaussian measure. Proc. Am. Math. Soc. 141(11), 4027–4030 (2013)

    Article  MathSciNet  Google Scholar 

  29. Nazarov, F.L.: On the maximal perimeter of a convex set in ${\mathbb{R}}^{n}$ with respect to Gaussian measure. Geom. Asp. Funct. Anal. 2003, 169–187 (1807)

    MATH  Google Scholar 

  30. Putterman, E.: Equivalence of the local and global versions of the $L^p-$Brunn–Minkowski inequality, preprint. arxiv:1909.03729

  31. Rotem, L.: A Letter: The log-Brunn–Minkowski Inequality for Complex Bodies. http://www.tau.ac.il/~liranro1/papers/complexletter.pdf

  32. Saroglou, C.: Remarks on the conjectured log-Brunn–Minkowski inequality. Geom. Dedic. 177(1), 353–365 (2015)

    Article  MathSciNet  Google Scholar 

  33. Saroglou, C.: More on Logarithmic Sums of Convex Bodies, preprint. arXiv:1409.4346

  34. Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory, Second Expanded Edition, Encyclopedia of Mathematics and Its Applications (2013)

Download references

Acknowledgements

The second named author was supported by RFBR project 20-01-00432; the second named author has been funded by the Russian Academic Excellence Project “5-100”. The third named author is supported by the NSF CAREER DMS-1753260. The authors are very grateful to the anonymous referee for a number of suggestions of crucial importance, thanks to which the paper got improved a lot.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galyna V. Livshyts.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma 11.1

Let K be an origin-symmetric convex body and w a continuous function on \(S^{n-1}\). Then,

$$\begin{aligned} \lim _{\varepsilon \rightarrow 0}\frac{\mu (W(h_K + \varepsilon w)) - \mu (K)}{\varepsilon }&= \int _{S^{n-1}} w(\theta ) \mathrm{{d}}\sigma _{\mu , K}(\theta ). \end{aligned}$$

Proof

Our proof follows the proof given in the appendix of [25]. Recall that for \(H_{n-1}\)-almost every \(x \in \partial K\) there exists a unique normal vector \(n_x\). Let us denote the subset of \(\partial K\) where this occurs by \(\widetilde{\partial K}\). Let \(X:\widetilde{\partial K} \times [0,\infty ) \rightarrow {\mathbb {R}}^n\setminus K\) be defined by \(X(x,t) = x + tn_x\), and let D(xt) be the Jacobian of this map. Moreover, from properties of Wulff shapes, we have that \(h_{A[h_K + \varepsilon w]}(n_x) \le h_K(n_x) + \varepsilon w(n_x)\) with equality for \(H_{n-1}\)-almost every \(x \in \widetilde{\partial K}\). See Schneider [34, Sect. 7.5]. Let \(\widetilde{\partial K}' \subset \widetilde{\partial K}\) be the subset where we have equality. Then,

$$\begin{aligned} \frac{1}{\varepsilon }(\mu (A[h_K + \varepsilon w]) - \mu (K))&= \frac{1}{\varepsilon }\int _{\widetilde{\partial K}'}\int _{0}^{\varepsilon w(n_x)}D(x,t)g(x+tn_x)\mathrm{{d}}t \mathrm{{d}}H_{n-1}(x). \end{aligned}$$

Observe that X(xt) is an expanding map. Indeed, for \(x_1, x_2 \in \widetilde{\partial K}\) and \(t_1, t_2 \in [0,\infty )\) we have

$$\begin{aligned} \begin{aligned} |X(x_1, t_1) - X(x_2, t_2)|^2&= |x_1 + t_1 n_{x_1} - x_2 - t_2 n_{x_2}|^2 \\&= |x_1 - x_2|^2 + |t_1n_{x_1} - t_2 n_{x_2}|^2 \\&\quad + t_1 \langle x_1 - x_2, n_{x_1}\rangle + t_2 \langle x_2-x_1, n_{x_2} \rangle . \end{aligned} \end{aligned}$$
(52)

Since K is convex, we have \(\langle x_1, n_{x_1}\rangle \ge \langle x_2, n_{x_1}\rangle \) and \(\langle x_2, n_{x_2}\rangle \ge \langle x_1, n_{x_2}\rangle \). Therefore,

$$\begin{aligned} |X(x_1, t_1) - X(x_2, t_2)|&\ge |x_1-x_2|^2 + |t_1n_{x_1} - t_2 n_{x_2}|^2 \\&\ge |x_1-x_2|^2 + |t_1-t_2|^2 \end{aligned}$$

as desired. It follows that \(D(x,t) \ge 1\), and so

$$\begin{aligned} \begin{aligned}&\liminf _{\varepsilon \rightarrow 0}\frac{1}{\varepsilon }(\mu (A[h_K + \varepsilon w]) - \mu (K)) \\&\quad \ge \liminf _{\varepsilon \rightarrow 0}\frac{1}{\varepsilon }\int _{\widetilde{\partial K}'}\int _{0}^{\varepsilon w(n_x)}g(x+tn_x) \mathrm{{d}}t \mathrm{{d}}H_{n-1}(x) \\&\quad =\int _{\widetilde{\partial K}'}w(n_x)g(x) \mathrm{{d}}H_{n-1}(x). \end{aligned} \end{aligned}$$
(53)

Since \(\partial K\setminus \widetilde{\partial K}'\) has \(H_{n-1}\)-measure zero, we get that

$$\begin{aligned} \begin{aligned} \liminf _{\varepsilon \rightarrow 0}\frac{1}{\varepsilon }(\mu (A[h_K + \varepsilon w]) - \mu (K))&\ge \int _{\partial K} w(n_x) g(x) \mathrm{{d}}H_{n-1}(x) \\&= \int _{S^{n-1}}w(\theta ) \mathrm{{d}}\sigma _{\mu , K}(\theta ). \end{aligned} \end{aligned}$$
(54)

We now pursue the reverse inequality. For an arbitrary \(\delta > 0\), define

$$\begin{aligned} (\partial K)_{\delta }&= \{x \in \partial K: \exists \ a\in {\mathbb {R}}^n \text { s.t. } x \in B(a,\delta ) \subset K\} \end{aligned}$$

where \(B(a,\delta )\) is the Euclidean ball \(\{y \in {\mathbb {R}}^n: |y-a|<\delta \}\). For a sufficiently small \(\varepsilon >0\), take \(0 \le t_1, t_2 \le \varepsilon \) and \(x_1, x_2 \in (\partial K)_{\delta }\). From (52), we have

$$\begin{aligned}&|X(x_1, t_1) - X(x_2, t_2)| \le |x_1-x_2|^2 + |t_1 - t_2|^2 + \varepsilon ^2 |n_{x_1} - n_{x_2}|^2\\&\quad + \varepsilon \langle x_1-x_2, n_{x_1} - n_{x_2}\rangle . \end{aligned}$$

Now, it is a result of Hug [14] that the Gauss map is Lipschitz on \((\partial K)_{\delta }\). Let us denote the Lipschitz constant by \(L(\delta )\). Then

$$\begin{aligned}&\frac{|x_1-x_2|^2+|t_1-t_2|^2+\varepsilon ^2|n_{x_1} - n_{x_2}|^2 + \varepsilon \langle x_1 - x_2, n_{x_1} - n_{x_2}\rangle }{|x_1-x_2|^2 + |t_1-t_2|^2}\\&\quad \le 1 + L(\delta )\varepsilon + L(\delta )^2 \varepsilon ^2. \end{aligned}$$

Hence,

$$\begin{aligned} D(x,t)&\le (1 + L(\delta )\varepsilon + L(\delta )^2 \varepsilon ^2)^{n-1} \le 1 + C(K,n,\delta ) \varepsilon . \end{aligned}$$

We have therefore

$$\begin{aligned}&\limsup _{\varepsilon \rightarrow 0}\frac{1}{\varepsilon }\int _{(\partial K)_{\delta } \cap \widetilde{\partial K}'}\int _{0}^{\varepsilon w(n_x)}D(x,t)g(x+tn_x)\mathrm{{d}}t \mathrm{{d}}H_{n-1}(x) \\&\quad \le \int _{(\partial K)_{\delta } \cap \widetilde{\partial K}'}w(n_x) g(x) \mathrm{{d}}H_{n-1}(x) \\&\quad = \int _{(\partial K)_{\delta }}w(n_x)g(x) \mathrm{{d}}H_{n-1}(x). \end{aligned}$$

Since \(D(x,t) \ge 1\), we have as in (53) also that

$$\begin{aligned}&\liminf _{\varepsilon \rightarrow 0}\frac{1}{\varepsilon }\int _{(\partial K)_{\delta } \cap \widetilde{\partial K}'}\int _{0}^{\varepsilon w(n_x)}D(x,t)g(x+tn_x)\mathrm{{d}}t \mathrm{{d}}H_{n-1}(x) \\&\quad \ge \int _{(\partial K)_{\delta }}w(n_x) g(x) \mathrm{{d}}H_{n-1}(x). \end{aligned}$$

It follows that the limit in \(\varepsilon \) exists and

$$\begin{aligned}&\lim _{\varepsilon \rightarrow 0}\frac{1}{\varepsilon }\int _{(\partial K)_{\delta } \cap \widetilde{\partial K}'}\int _{0}^{\varepsilon w(n_x)}D(x,t)g(x+tn_x)\mathrm{{d}}t \mathrm{{d}}H_{n-1}(x)\\&\quad = \int _{(\partial K)_{\delta }}w(n_x) g(x) \mathrm{{d}}H_{n-1}(x). \end{aligned}$$

By the dominated convergence theorem and lower semi-continuity,

$$\begin{aligned}&\limsup _{\varepsilon \rightarrow 0}\frac{1}{\varepsilon }\left( \mu (A[h_K + \varepsilon w]) - \mu (K)\right) \\&\quad = \limsup _{\varepsilon \rightarrow 0}\frac{1}{\varepsilon }\int _{\widetilde{\partial K}'}\int _{0}^{\varepsilon w(n_x)}D(x,t)g(x+tn_x)\mathrm{{d}}t \mathrm{{d}}H_{n-1}(x) \\&\quad = \limsup _{\varepsilon \rightarrow 0}\lim _{\delta \rightarrow 0}\frac{1}{\varepsilon }\int _{(\partial K)_{\delta } \cap \widetilde{\partial K}'}\int _{0}^{\varepsilon w(n_x)}D(x,t)g(x+tn_x)\mathrm{{d}}t \mathrm{{d}}H_{n-1}(x) \\&\quad = \lim _{\delta \rightarrow 0}\lim _{\varepsilon \rightarrow 0}\frac{1}{\varepsilon }\int _{(\partial K)_{\delta } \cap \widetilde{\partial K}'}\int _{0}^{\varepsilon w(n_x)}D(x,t)g(x+tn_x)\mathrm{{d}}t \mathrm{{d}}H_{n-1}(x) \\&\quad = \lim _{\delta \rightarrow 0}\int _{(\partial K)_{\delta }}w(n_x)g(x) \mathrm{{d}}H_{n-1}(x) \\&\quad = \int _{\widetilde{\partial K}}w(n_x)g(x)\mathrm{{d}}H_{n-1}(x) \\&\quad = \int _{\partial K}w(n_x)g(x)\mathrm{{d}}H_{n-1}(x) \\&\quad = \int _{S^{n-1}}w(\theta ) \mathrm{{d}}\sigma _{\mu , K}(\theta ). \end{aligned}$$

Combining this with (54) gives us the desired conclusion. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosle, J., Kolesnikov, A.V. & Livshyts, G.V. On the \(L_p\)-Brunn–Minkowski and Dimensional Brunn–Minkowski Conjectures for Log-Concave Measures. J Geom Anal 31, 5799–5836 (2021). https://doi.org/10.1007/s12220-020-00505-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-020-00505-z

Keywords

Mathematics Subject Classification

Navigation