Skip to main content
Log in

Pore-scale direct numerical simulation of Haines jumps in a porous media model

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Direct numerical simulations are presented for a porous media model consisting of two immiscible fluids, an invading and defending phase, in a two-dimensional micro-geometry filled with randomly sized and randomly distributed cylinders. First, interface instability and penetration modes are studied when varying the wetting features of a single pore in the porous medium. It is found that the displacement patterns not only change with the capillary number, as previously observed, but also are a function of the contact angle, even for a viscosity ratio of unity. This is an important conclusion suggesting that capillary number and viscosity ratio alone cannot completely describe the pore-scale displacement. Second, rapid pore-scale displacement is considered, where the displacements are accompanied by sudden interface jumps from one site to another, known as Haines jumps. The characteristic time and length scales of a Haines jump are examined to better understand the transient dynamics of the jump. We then focus on analyzing the Haines jump in a simple pore configuration where cylinders of equal size are placed at the vertices of equilateral triangles. We use this geometry to provide more insight into the effect of the contact angle at which the Haines jump is predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Perazzo, G. Tomaiuolo, V. Preziosi, S. Guido, Adv. Colloid Interface Sci. 256, 305 (2018)

    Article  Google Scholar 

  2. R. Lenormand, J. Phys.: Condens. Matter 2, SA79 (1990)

    ADS  Google Scholar 

  3. M.J. Blunt, H. Scher, Phys. Rev. E 52, 6387 (1995)

    Article  ADS  Google Scholar 

  4. K. Singh, B. Bijeljic, M.J. Blunt, Water Resour. Res. 52, 1716 (2016)

    Article  ADS  Google Scholar 

  5. K. Singh, M. Jung, M. Brinkmann, R. Seemann, Annu. Rev. Fluid Mech. 51, 429 (2019)

    Article  ADS  Google Scholar 

  6. A. Anbari, H.T. Chien, S.S. Datta, W. Deng, D.A. Weitz, J. Fan, Small 14, 1703575 (2018)

    Article  Google Scholar 

  7. I. Zacharoudiou, E.S. Boek, J. Crawshaw, Sci. Rep. 8, 1 (2018)

    Article  Google Scholar 

  8. B. Zhao, C.W. MacMinn, R. Juanes, Proc. Natl. Acad. Sci. 113, 10251 (2016)

    Article  ADS  Google Scholar 

  9. B.K. Primkulov, A.A. Pahlavan, X. Fu, B. Zhao, C.W. MacMinn, R. Juanes, J. Fluid Mech. 875, R4 (2019)

    Article  ADS  Google Scholar 

  10. M. Cieplak, M.O. Robbins, Phys. Rev. Lett. 60, 2042 (1988)

    Article  ADS  Google Scholar 

  11. M. Cieplak, M.O. Robbins, Phys. Rev. B 41, 11508 (1990)

    Article  ADS  Google Scholar 

  12. R. Holtzman, E. Segre, Phys. Rev. Lett. 115, 164501 (2015)

    Article  ADS  Google Scholar 

  13. M. Jung, M. Brinkmann, R. Seemann, T. Hiller, M. Sanchez de La Lama, S. Herminghaus, Phys. Rev. Fluids 1, 074202 (2016)

    Article  ADS  Google Scholar 

  14. B. Zhao, C.W. MacMinn, B.K. Primkulov, Y. Chen, A.J. Valocchi, J. Zhao, Q. Kang, K. Bruning, J.E. McClure, C.T. Miller et al., Proc. Natl. Acad. Sci. 116, 13799 (2019)

    Article  ADS  Google Scholar 

  15. F. Basirat, Z. Yang, A. Niemi, Adv. Water Resour. 109, 181 (2017)

    Article  ADS  Google Scholar 

  16. H. Liu, A.J. Valocchi, C. Werth, Q. Kang, M. Oostrom, Adv. Water Resour. 73, 144 (2014)

    Article  ADS  Google Scholar 

  17. M. Bussmann, J. Mostaghimi, S. Chandra, Phys. Fluids 11, 1406 (1999)

    Article  ADS  Google Scholar 

  18. S. Afkhami, S. Zaleski, M. Bussmann, J. Comput. Phys. 228, 5370 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  19. Y. Sui, H. Ding, P.D.M. Spelt, Annu. Rev. Fluid Mech. 46, 97 (2014)

    Article  ADS  Google Scholar 

  20. C.S. Peskin, J. Comput. Phys. 10, 252 (1972)

    Article  ADS  Google Scholar 

  21. R. Mittal, G. Iaccarino, Annu. Rev. Fluid Mech. 37, 239 (2005)

    Article  ADS  Google Scholar 

  22. A. O’Brien, M. Bussmann, J. Comput. Phys. 402, 109089 (2020)

    Article  MathSciNet  Google Scholar 

  23. A. O’Brien, M. Bussmann, Comput. Fluids 165, 43 (2018)

    Article  MathSciNet  Google Scholar 

  24. R. Hilfer, P.E. Øren, Transport Porous Med. 22, 53 (1996)

    Article  Google Scholar 

  25. J.O. Helland, S.M. Skjæveland, Water Resour. Res. 43, W12S10 (2007)

    Article  Google Scholar 

  26. W.B. Haines, J. Agric. Sci. 20, 97 (1930)

    Article  Google Scholar 

  27. O. Ubbink, R. Issa, J. Comput. Phys. 153, 26 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  28. J.U. Brackbill, D.B. Kothe, C. Zemach, J. Comput. Phys. 100, 335 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  29. A.J. Chorin, Bull. Am. Math. Soc. 73, 928 (1967)

    Article  Google Scholar 

  30. M.M. Francois, S.J. Cummins, E.D. Dendy, D.B. Kothe, J.M. Sicilian, M.W. Williams, J. Comput. Phys. 213, 141 (2006)

    Article  ADS  Google Scholar 

  31. S. Afkhami, J. Buongiorno, A. Guion, S. Popinet, Y. Saade, R. Scardovelli, S. Zaleski, J. Comput. Phys. 374, 1061 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  32. K. Singh, H. Scholl, M. Brinkmann, M.D. Michiel, M. Scheel, S. Herminghaus, R. Seemann, Sci. Rep. 7, 1 (2017)

    Article  Google Scholar 

  33. R.T. Armstrong, N. Evseev, D. Koroteev, S. Berg, Adv. Water Resour. 77, 57 (2015)

    Article  ADS  Google Scholar 

  34. C. Zhang, M. Oostrom, T.W. Wietsma, J.W. Grate, M.G. Warner, Energy Fuels 25, 3493 (2011)

    Article  Google Scholar 

  35. A. Ferrari, I. Lunati, Adv. Water Resour. 57, 19 (2013)

    Article  ADS  Google Scholar 

  36. S. Mei, J.L. Bryan, A. Kantzas, inSPE Heavy Oil Conference Canada, 2012, pp. 1–11

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahriar Afkhami.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Brien, A., Afkhami, S. & Bussmann, M. Pore-scale direct numerical simulation of Haines jumps in a porous media model. Eur. Phys. J. Spec. Top. 229, 1785–1798 (2020). https://doi.org/10.1140/epjst/e2020-000008-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2020-000008-0

Navigation