Skip to main content

Advertisement

Log in

Immunosuppressive Effects of Mesenchymal Stem Cells-derived Exosomes

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) have become important seed cells in therapy because of their immunosuppressive function and anti-inflammatory effects. MSCs exert immunosuppressive effects through direct contact or paracrine action. The paracrine functions of MSCs are at least partially mediated by exosomes, which are membrane vesicles, carrying abundant proteins, nucleic acids and other active molecules. MSC-exos have heterogeneity. The exosomes from different donors, tissues generations of MSCs carry different bioactive molecules. These cargos are transferred to recipient cells by endocytosis or binding to proteins on the receptor surface to mediate intercellular communication between different cell types and affect the functions of the recipient cells. Exosomes play an important role in the regulation of the immune system. Exosomes derived from MSCs (MSC-exos) carry immunomodulatory effectors or transmit active signal molecules to regulate the biological activities of immune cells and thus mediating immune suppression, especially on macrophages and T cells. Mitochondria and autophagy-related pathways are also associated with MSC-exos immunosuppressive effects.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mehler, V. J., Burns, C., & Moore, M. L. (2019). Concise review: Exploring immunomodulatory features of mesenchymal stromal cells in humanized mouse models. Stem Cells, 37(3), 298–305.

    PubMed  Google Scholar 

  2. Neuhuber, B., et al. (2008). Effects of plating density and culture time on bone marrow stromal cell characteristics. Experimental Hematology, 36(9), 1176–1185.

    PubMed  PubMed Central  Google Scholar 

  3. Abumaree, M. H., et al. (2017). Immunomodulatory properties of human placental mesenchymal stem/stromal cells. Placenta, 59, 87–95.

    CAS  PubMed  Google Scholar 

  4. Salami, F., et al. (2018). Immunomodulatory effects of mesenchymal stem cells on leukocytes with emphasis on neutrophils. Immunobiology, 223(12), 786–791.

    CAS  PubMed  Google Scholar 

  5. Russell, K. A., et al. (2016). Characterization and immunomodulatory effects of canine adipose tissue- and bone marrow-derived mesenchymal stromal cells. PLoS One, 11(12), e0167442.

    PubMed  PubMed Central  Google Scholar 

  6. Pal, B., & Das, B. (2017). In vitro culture of naive human bone marrow mesenchymal stem cells: A stemness based approach. Front Cell Dev Biol, 5, 69.

    PubMed  PubMed Central  Google Scholar 

  7. Relation, T., et al. (2018). Intratumoral delivery of interferongamma-secreting mesenchymal stromal cells repolarizes tumor-associated macrophages and suppresses neuroblastoma proliferation in vivo. Stem Cells, 36(6), 915–924.

    CAS  PubMed  Google Scholar 

  8. Ribeiro, A., et al. (2013). Mesenchymal stem cells from umbilical cord matrix, adipose tissue and bone marrow exhibit different capability to suppress peripheral blood B, natural killer and T cells. Stem Cell Research & Therapy, 4(5), 125.

    Google Scholar 

  9. Castro-Manrreza, M. E., & Montesinos, J. J. (2015). Immunoregulation by mesenchymal stem cells: biological aspects and clinical applications. Journal of Immunology Research, 2015, 394917.

    PubMed  PubMed Central  Google Scholar 

  10. Laranjeira, P., et al. (2015). Effect of human bone marrow mesenchymal stromal cells on cytokine production by peripheral blood naive, memory, and effector T cells. Stem Cell Research & Therapy, 6(1), 3.

    Google Scholar 

  11. Lee, H. J., et al. (2017). ICOSL expression in human bone marrow-derived mesenchymal stem cells promotes induction of regulatory T cells. Scientific Reports, 7, 44486.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim, H. Y., et al. (2018). Therapeutic efficacy-potentiated and diseased organ-targeting nanovesicles derived from mesenchymal stem cells for spinal cord injury treatment. Nano Letters, 18(8), 4965–4975.

    CAS  PubMed  Google Scholar 

  13. Sun, Y., et al. (2018). Human mesenchymal stem cell derived exosomes alleviate type 2 diabetes mellitus by reversing peripheral insulin resistance and relieving beta-cell destruction. ACS Nano, 12(8), 7613–7628.

    CAS  PubMed  Google Scholar 

  14. Deng, H., et al. (2018). Lipid, protein, and microRNA composition within mesenchymal stem cell-derived exosomes. Cellular Reprogramming, 20(3), 178–186.

    CAS  PubMed  Google Scholar 

  15. Bissig, C., & Gruenberg, J. (2013). Lipid sorting and multivesicular endosome biogenesis. Cold Spring Harbor Perspectives, 5(10), a016816.

    Google Scholar 

  16. Cheng, X., et al. (2018). Mesenchymal stem cells deliver exogenous miR-21 via exosomes to inhibit nucleus pulposus cell apoptosis and reduce intervertebral disc degeneration. Journal of Cellular and Molecular Medicine, 22(1), 261–276.

    CAS  PubMed  Google Scholar 

  17. Yu, B., Zhang, X., & Li, X. (2014). Exosomes derived from mesenchymal stem cells. International Journal of Molecular Sciences, 15(3), 4142–4157.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lobb, R. J., et al. (2015). Optimized exosome isolation protocol for cell culture supernatant and human plasma. Journal of Extracellular Vesicles, 4, 27031.

    PubMed  Google Scholar 

  19. Van Deun, J., et al. (2014). The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. Journal of Extracellular Vesicles, 3.

  20. Momen-Heravi, F., et al. (2013). Current methods for the isolation of extracellular vesicles. Biological Chemistry, 394(10), 1253–1262.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Burkova, E. E., et al. (2014). Extremely stable soluble high molecular mass multi-protein complex with DNase activity in human placental tissue. PLoS One, 9(11), e111234.

    PubMed  PubMed Central  Google Scholar 

  22. Burkova, E. E., et al. (2019). Extra Purified Exosomes from Human Placenta Contain An Unpredictable Small Number of Different Major Proteins. International Journal of Molecular Sciences, 20(10).

  23. Gupta, S., et al. (2018). An improvised one-step sucrose cushion ultracentrifugation method for exosome isolation from culture supernatants of mesenchymal stem cells. Stem Cell Research & Therapy, 9(1), 180.

    CAS  Google Scholar 

  24. Bruce, T. F., et al. (2019). Exosome isolation and purification via hydrophobic interaction chromatography using a polyester, capillary-channeled polymer fiber phase. Electrophoresis, 40(4), 571–581.

    CAS  PubMed  Google Scholar 

  25. Marcus, R. K., et al. (2003). Capillary-channeled polymer fibers as stationary phases in liquid chromatography separations. Journal of Chromatography A, 986(1), 17–31.

    CAS  PubMed  Google Scholar 

  26. Nelson, D. K., & Marcus, R. K. (2003). A novel stationary phase: capillary-channeled polymer (C-CP) fibers for HPLC separations of proteins. Journal of Chromatographic Science, 41(9), 475–479.

    CAS  PubMed  Google Scholar 

  27. Stanelle, R. D., & Marcus, R. K. (2009). Nylon-6 capillary-channeled polymer (C-CP) fibers as a hydrophobic interaction chromatography stationary phase for the separation of proteins. Analytical and Bioanalytical Chemistry, 393(1), 273–281.

    CAS  PubMed  Google Scholar 

  28. Randunu, K. M., & Marcus, R. K. (2012). Microbore polypropylene capillary channeled polymer (C-CP) fiber columns for rapid reversed-phase HPLC of proteins. Analytical and Bioanalytical Chemistry, 404(3), 721–729.

    CAS  PubMed  Google Scholar 

  29. Jiang, L., & Marcus, R. K. (2017). Microwave-assisted grafting polymerization modification of nylon 6 capillary-channeled polymer fibers for enhanced weak cation exchange protein separations. Analytica Chimica Acta, 954, 129–139.

    CAS  PubMed  Google Scholar 

  30. Jiang, L., & Marcus, R. K. (2017). Microwave-assisted, grafting polymerization preparation of strong cation exchange nylon 6 capillary-channeled polymer fibers and their chromatographic properties. Analytica Chimica Acta, 977, 52–64.

    CAS  PubMed  Google Scholar 

  31. Harrell, C. R., et al. (2019). Molecular mechanisms responsible for anti-inflammatory and immunosuppressive effects of mesenchymal stem cell-derived factors. Advances in Experimental Medicine and Biology, 1084, 187–206.

    CAS  PubMed  Google Scholar 

  32. Shin, H., et al. (2015). Clinical use of conditioned media of adipose tissue-derived stem cells in female pattern hair loss: a retrospective case series study. International Journal of Dermatology, 54(6), 730–735.

    PubMed  Google Scholar 

  33. La Greca, A., et al. (2018). Extracellular vesicles from pluripotent stem cell-derived mesenchymal stem cells acquire a stromal modulatory proteomic pattern during differentiation. Experimental & Molecular Medicine, 50(9), 119.

    Google Scholar 

  34. Whiteside, T. L. (2018). Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment. Seminars in Immunology, 35, 69–79.

    CAS  PubMed  Google Scholar 

  35. Chen, W., et al. (2016). Immunomodulatory effects of mesenchymal stromal cells-derived exosome. Immunology Research, 64(4), 831–840.

    CAS  Google Scholar 

  36. Kilpinen, L., et al. (2013). Extracellular membrane vesicles from umbilical cord blood-derived MSC protect against ischemic acute kidney injury, a feature that is lost after inflammatory conditioning. Journal of Extracellular Vesicles, 2.

  37. Zhang, B., et al. (2014). Mesenchymal stem cells secrete immunologically active exosomes. Stem Cells and Development, 23(11), 1233–1244.

    CAS  PubMed  Google Scholar 

  38. Lankford, K. L., et al. (2018). Intravenously delivered mesenchymal stem cell-derived exosomes target M2-type macrophages in the injured spinal cord. PLoS One, 13(1), e0190358.

    PubMed  PubMed Central  Google Scholar 

  39. Haraszti, R. A., et al. (2019). Serum deprivation of mesenchymal stem cells improves exosome activity and alters lipid and protein composition. iScience, 16, 230–241.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lai, R. C., et al. (2012). Proteolytic potential of the MSC exosome proteome: Implications for an exosome-mediated delivery of therapeutic proteasome. International Journal of Proteomics , 2012, 971907.

    PubMed  PubMed Central  Google Scholar 

  41. Baglio, S. R., et al. (2015). Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Research & Therapy, 6(1), 127.

    Google Scholar 

  42. 梁亚会, et al. (2017). Heterogeneity of immunomodulatory function of exosomes derived from human umbilical cord mesenchymal stem cells. 041(006), 434–439.

  43. Joo, H. S., et al. (2020) Current knowledge and future perspectives on mesenchymal stem cell-derived exosomes as a new therapeutic agent. International Journal of Molecular Sciences, 21(3).

  44. Elahi, F. M., et al. (2020). Preclinical translation of exosomes derived from mesenchymal stem/stromal cells. Stem Cells, 38(1), 15–21.

    PubMed  Google Scholar 

  45. Showalter, M. R., et al. (2019). Primed mesenchymal stem cells package exosomes with metabolites associated with immunomodulation. Biochemical and Biophysical Research Communications, 512(4), 729–735.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Han, Y. D., et al. (2018). Co-transplantation of exosomes derived from hypoxia-preconditioned adipose mesenchymal stem cells promotes neovascularization and graft survival in fat grafting. Biochemical and Biophysical Research Communications, 497(1), 305–312.

    CAS  PubMed  Google Scholar 

  47. Liu, H., et al. (2019). Human umbilical cord mesenchymal stem cells derived exosomes exert antiapoptosis effect via activating PI3K/Akt/mTOR pathway on H9C2 cells. Journal of Cellular Biochemistry, 120(9), 14455–14464.

    CAS  PubMed  Google Scholar 

  48. Miceli, V., et al. (2019) Comparison of immunosuppressive and angiogenic properties of human amnion-derived mesenchymal stem cells between 2D and 3D culture systems. Stem Cells International, 2019, 7486279.

  49. Bartosh, T. J., et al. (2010). Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proceedings of the National Academy of Sciences of the United States of America, 107(31), 13724–13729.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Ranganath, S. H., et al. (2016). Controlled inhibition of the mesenchymal stromal cell pro-inflammatory secretome via microparticle engineering. Stem Cell Reports, 6(6), 926–939.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, Q., et al. (2018). Exosomes originating from MSCs stimulated with TGF-beta and IFN-gamma promote Treg differentiation. Journal of Cellular Physiology, 233(9), 6832–6840.

    CAS  PubMed  Google Scholar 

  52. Riazifar, M., et al. (2019). Stem cell-derived exosomes as nanotherapeutics for autoimmune and neurodegenerative disorders. ACS Nano, 13(6), 6670–6688.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Nojehdehi, S., et al. (2018). Immunomodulatory effects of mesenchymal stem cell-derived exosomes on experimental type-1 autoimmune diabetes. Journal of Cellular Biochemistry, 119(11), 9433–9443.

    CAS  PubMed  Google Scholar 

  54. Guo, L. Y., et al. (2019). Regulatory effect of exosomes derived from human umbiilcal cord mesenchymal stem cells on Treg and TH17 cells. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 27(1), 221–226.

    PubMed  Google Scholar 

  55. Ji, L., et al. (2019). Comparison of immunomodulatory properties of exosomes derived from bone marrow mesenchymal stem cells and dental pulp stem cells. Immunology Research, 67(4–5), 432–442.

    CAS  Google Scholar 

  56. He, J. G., et al. (2018). Exosomes derived from IDO1-Overexpressing rat bone marrow mesenchymal stem cells promote immunotolerance of cardiac allografts. Cell Transplant, 27(11), 1657–1683.

    PubMed  PubMed Central  Google Scholar 

  57. Harting, M. T., et al. (2018). Inflammation-stimulated mesenchymal stromal cell-derived extracellular vesicles attenuate inflammation. Stem Cells, 36(1), 79–90.

    CAS  PubMed  Google Scholar 

  58. Liang, Y. C., et al. (2019). TNF-α-induced exosomal miR-146a mediates mesenchymal stem cell-dependent suppression of urethral stricture. Journal of Cellular Physiology, 234(12), 23243–23255.

    CAS  PubMed  Google Scholar 

  59. Zhang, S., et al. (2020). Pretreatment of exosomes derived from hUCMSCs with TNF-α ameliorates acute liver failure by inhibiting the activation of NLRP3 in macrophage. Life Sciences, 246, 117401.

    CAS  PubMed  Google Scholar 

  60. Cosenza, S., et al. (2018). Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis. Theranostics, 8(5), 1399–1410.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ti, D., et al. (2015). LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. Journal of Translational Medicine, 13, 308.

    PubMed  PubMed Central  Google Scholar 

  62. Mead, B., Ahmed, Z., & Tomarev, S. (2018). Mesenchymal stem cell-derived small extracellular vesicles promote neuroprotection in a genetic DBA/2J mouse model of glaucoma. Investigative Ophthalmology & Visual Science, 59(13), 5473–5480.

    CAS  Google Scholar 

  63. Shahir, M., et al. (2020) Effect of mesenchymal stem cell-derived exosomes on the induction of mouse tolerogenic dendritic cells. Journal of Cellular Physiology.

  64. Sung, D. K., et al. (2019). Thrombin preconditioning of extracellular vesicles derived from mesenchymal stem cells accelerates cutaneous wound healing by boosting their biogenesis and enriching cargo content. Journal of Clinical Medicine, 8(4).

  65. Sung, D. K., et al. (2019) Thrombin preconditioning boosts biogenesis of extracellular vesicles from mesenchymal stem cells and enriches their cargo contents via protease-activated receptor-mediated signaling pathways. International Journal of Molecular Sciences, 20(12).

  66. Matthay, M. A., & Abman, S. H. (2018). Exosome-based therapy for bronchopulmonary dysplasia. American Journal of Respiratory and Critical Care Medicine, 197(1), 10–12.

    CAS  PubMed  Google Scholar 

  67. Cao, L., et al. (2019). Extracellular vesicles derived from bone marrow mesenchymal stem cells attenuate dextran sodium sulfate-induced ulcerative colitis by promoting M2 macrophage polarization. International Immunopharmacology, 72, 264–274.

    CAS  PubMed  Google Scholar 

  68. Wang, R., et al. (2019). Role of gingival mesenchymal stem cell exosomes in macrophage polarization under inflammatory conditions. International Immunopharmacology, 106030.

  69. Harrell, C. R., et al. (2018). Therapeutic potential of mesenchymal stem cell-derived exosomes in the treatment of eye diseases. Advances in Experimental Medicine and Biology, 1089, 47–57.

    CAS  PubMed  Google Scholar 

  70. Laso-Garcia, F., et al. (2018). Therapeutic potential of extracellular vesicles derived from human mesenchymal stem cells in a model of progressive multiple sclerosis. PLoS One, 13(9), e0202590.

    PubMed  PubMed Central  Google Scholar 

  71. Choi, M., Ban, T., & Rhim, T. (2014). Therapeutic use of stem cell transplantation for cell replacement or cytoprotective effect of microvesicle released from mesenchymal stem cell. Molecules and Cells, 37(2), 133–139.

    PubMed  PubMed Central  Google Scholar 

  72. Jiang, L., et al. (2019). Exosomes derived from human umbilical cord mesenchymal stem cells alleviate acute liver failure by reducing the activity of the NLRP3 inflammasome in macrophages. Biochemical and Biophysical Research Communications, 508(3), 735–741.

    CAS  PubMed  Google Scholar 

  73. Fathollahi, A., et al. (2019). In vitro analysis of immunomodulatory effects of mesenchymal stem cell- and tumor cell -derived exosomes on recall antigen-specific responses. International Immunopharmacology, 67, 302–310.

    CAS  PubMed  Google Scholar 

  74. Lee, P. H., et al. (2014). The transcription factor E74-like factor 4 suppresses differentiation of proliferating CD4 + T cells to the Th17 lineage. Journal of Immunology, 192(1), 178–188.

    CAS  Google Scholar 

  75. Qiu, G., et al. (2019). Functional proteins of mesenchymal stem cell-derived extracellular vesicles. Stem Cell Research & Therapy, 10(1), 359.

    Google Scholar 

  76. Casado, J. G., et al. (2017). Mesenchymal stem cell-derived exosomes: immunomodulatory evaluation in an antigen-induced synovitis porcine model. Frontiers in Veterinary Science , 4, 39.

    PubMed  PubMed Central  Google Scholar 

  77. Shiue, S. J., et al. (2019). Mesenchymal stem cell exosomes as a cell-free therapy for nerve injury-induced pain in rats. Pain, 160(1), 210–223.

    CAS  PubMed  Google Scholar 

  78. Du, Y. M., et al. (2018). Mesenchymal stem cell exosomes promote immunosuppression of regulatory T cells in asthma. Experimental Cell Research, 363(1), 114–120.

    CAS  PubMed  Google Scholar 

  79. Fierabracci, A., et al. (2015). Recent advances in mesenchymal stem cell immunomodulation: the role of microvesicles. Cell Transplant, 24(2), 133–149.

    PubMed  Google Scholar 

  80. Hyvarinen, K., et al. (2018). Mesenchymal stromal cells and their extracellular vesicles enhance the anti-inflammatory phenotype of regulatory macrophages by downregulating the production of interleukin (IL)-23 and IL-22. Frontiers in Immunology, 9, 771.

    PubMed  PubMed Central  Google Scholar 

  81. Mianehsaz, E., et al. (2019). Mesenchymal stem cell-derived exosomes: a new therapeutic approach to osteoarthritis? Stem Cell Research & Therapy, 10(1), 340.

    Google Scholar 

  82. Xu, N., et al. (2019). Mesenchymal stem cell-derived exosomes attenuate phosgene-induced acute lung injury in rats. Inhalation Toxicology, 31(2), 52–60.

    CAS  PubMed  Google Scholar 

  83. Li, Z., et al. (2019). Exosomes derived from mesenchymal stem cells attenuate inflammation and demyelination of the central nervous system in EAE rats by regulating the polarization of microglia. International Immunopharmacology, 67, 268–280.

    CAS  PubMed  Google Scholar 

  84. Li, Y., et al. (2017). Exosomes secreted by stem cells from human exfoliated deciduous teeth contribute to functional recovery after traumatic brain injury by shifting microglia M1/M2 polarization in rats. Stem Cell Research & Therapy, 8(1), 198.

    Google Scholar 

  85. Wang, L., et al. (2016). Extracellular vesicles released from human umbilical cord-derived mesenchymal stromal cells prevent life-threatening acute graft-versus-host disease in a mouse model of allogeneic hematopoietic stem cell transplantation. Stem Cells and Development, 25(24), 1874–1883.

    CAS  PubMed  Google Scholar 

  86. Ma, Z. J., et al. (2019). Immunosuppressive effect of exosomes from mesenchymal stromal cells in defined medium on experimental colitis. International Journal of Stem Cells, 12(3), 440–448.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Pachler, K., et al. (2017) An in vitro potency assay for monitoring the immunomodulatory potential of stromal cell-derived extracellular vesicles. International Journal of Molecular Sciences, 18(7).

  88. Lo Sicco, C., et al. (2017). Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects: endorsement of macrophage polarization. Stem Cells Translational Medicine, 6(3), 1018–1028.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Willis, G. R., et al. (2018). Macrophage immunomodulation: The gatekeeper for mesenchymal stem cell derived-exosomes in pulmonary arterial hypertension? International Journal of Molecular Sciences, 19(9).

  90. Harrell, C. R., et al. (2019). Mesenchymal stem cell-derived exosomes and other extracellular vesicles as new remedies in the therapy of inflammatory diseases. Cells, 8(12).

  91. Chamberlain, C. S., et al. (2019). Extracellular vesicle-educated macrophages promote early achilles tendon healing. Stem Cells, 37(5), 652–662.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Klinger, J. R., et al. (2019). Mesenchymal stem cell extracellular vesicles reverse sugen/hypoxia pulmonary hypertension in rats. American Journal of Respiratory Cell and Molecular Biology.

  93. Deng, S., et al. (2019). Exosomes from adipose-derived mesenchymal stem cells ameliorate cardiac damage after myocardial infarction by activating S1P/SK1/S1PR1 signaling and promoting macrophage M2 polarization. The International Journal of Biochemistry & Cell Biology, 114, 105564.

    CAS  Google Scholar 

  94. Biswas, S., et al. (2019). Exosomes produced by mesenchymal stem cells drive differentiation of myeloid cells into immunosuppressive M2-polarized macrophages in breast cancer. Journal of Immunology, 203(12), 3447–3460.

    CAS  Google Scholar 

  95. Huang, R., et al. (2019). Differential effects of extracellular vesicles from aging and young mesenchymal stem cells in acute lung injury. Aging (Albany NY), 11(18), 7996–8014.

    CAS  Google Scholar 

  96. Li, J., et al. (2019). Exosomes derived from mesenchymal stem cells attenuate the progression of atherosclerosis in ApoE(-/-) mice via miR-let7 mediated infiltration and polarization of M2 macrophage. Biochemical and Biophysical Research Communications, 510(4), 565–572.

    CAS  PubMed  Google Scholar 

  97. Song, Y., et al. (2017). Exosomal miR-146a Contributes to the Enhanced Therapeutic Efficacy of Interleukin-1beta-Primed Mesenchymal Stem Cells Against Sepsis. Stem Cells, 35(5), 1208–1221.

    CAS  PubMed  Google Scholar 

  98. Willis, G. R., et al. (2017) Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation197(1).

  99. Lanyu, Z., & Feilong, H. (2019). Emerging role of extracellular vesicles in lung injury and inflammation. Biomedicine & Pharmacotherapy, 113, 108748.

    Google Scholar 

  100. Zhao, H., et al. (2018). Exosomes from adipose-derived stem cells attenuate adipose inflammation and obesity through polarizing M2 macrophages and beiging in white adipose tissue. Diabetes, 67(2), 235–247.

    CAS  PubMed  Google Scholar 

  101. Seo, Y., Kim, H. S., & Hong, I. S. (2019). Stem cell-derived extracellular vesicles as immunomodulatory therapeutics. Stem Cells International, 2019, 5126156.

  102. Ni, H., et al. (2019). Exosomes derived from bone mesenchymal stem cells ameliorate early inflammatory responses following traumatic brain injury. Frontiers in Neuroscience, 13, 14.

    PubMed  PubMed Central  Google Scholar 

  103. Cosenza, S., et al. (2017). Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis. Scientific Reports, 7(1), 16214.

    PubMed  PubMed Central  Google Scholar 

  104. Tofino-Vian, M., et al. (2018). Microvesicles from human adipose tissue-derived mesenchymal stem cells as a new protective strategy in osteoarthritic chondrocytes. Cellular Physiology and Biochemistry, 47(1), 11–25.

    CAS  PubMed  Google Scholar 

  105. Yang, J., et al. (2015). Extracellular vesicles derived from bone marrow mesenchymal stem cells protect against experimental colitis via attenuating colon inflammation, oxidative stress and apoptosis. PLoS One, 10(10), e0140551.

    PubMed  PubMed Central  Google Scholar 

  106. Zhang, S., et al. (2019). MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis. Biomaterials, 200, 35–47.

    CAS  PubMed  Google Scholar 

  107. Atala, A. (2012). Re: Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. The Journal of Urology, 187(4), 1506–1507.

    PubMed  Google Scholar 

  108. Del Fattore, A., et al. (2015). Immunoregulatory effects of mesenchymal stem cell-derived extracellular vesicles on T lymphocytes. Cell Transplant, 24(12), 2615–2627.

    PubMed  Google Scholar 

  109. Wang, B., et al. (2016). Mesenchymal stem cells deliver exogenous microrna-let7c via exosomes to attenuate renal fibrosis. Molecular Therapy, 24(7), 1290–1301.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Hao, Q., et al. (2019). Mesenchymal stem cell-derived extracellular vesicles decrease lung injury in mice. Journal of Immunology, 203(7), 1961–1972.

    CAS  Google Scholar 

  111. Grabiec, A. M., & Hussell, T. (2016). The role of airway macrophages in apoptotic cell clearance following acute and chronic lung inflammation. Seminars in Immunopathology, 38(4), 409–423.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Wu, H., et al. (2019). Extracellular vesicles containing miR-146a attenuate experimental colitis by targeting TRAF6 and IRAK1. International Immunopharmacology, 68, 204–212.

    CAS  PubMed  Google Scholar 

  113. Zhang, R., et al. (2020). Human umbilical cord mesenchymal stem cell exosomes alleviate sepsis-associated acute kidney injury via regulating microRNA-146b expression. Biotechnology Letters.

  114. Liu, Y., et al. (2018). AMSC-derived exosomes alleviate lipopolysaccharide/d-galactosamine-induced acute liver failure by miR-17-mediated reduction of TXNIP/NLRP3 inflammasome activation in macrophages. EBioMedicine, 36, 140–150.

    PubMed  PubMed Central  Google Scholar 

  115. Li, X., et al. (2016). Exosome derived from human umbilical cord mesenchymal stem cell mediates MiR-181c attenuating burn-induced excessive inflammation. EBioMedicine, 8, 72–82.

    PubMed  PubMed Central  Google Scholar 

  116. Wang, X., et al. (2015). Exosomal miR-223 contributes to mesenchymal stem cell-elicited cardioprotection in polymicrobial sepsis. Scientific Reports, 5, 13721.

    PubMed  PubMed Central  Google Scholar 

  117. Shao, M., et al. (2020). Exosomes derived from human umbilical cord mesenchymal stem cells ameliorate IL-6-induced acute liver injury through miR-455-3p. Stem Cell Research & Therapy, 11(1), 37.

    CAS  Google Scholar 

  118. Liu, Y., et al. (2018). Exosomal KLF3-AS1 from hMSCs promoted cartilage repair and chondrocyte proliferation in osteoarthritis. Biochemical Journal, 475(22), 3629–3638.

    CAS  Google Scholar 

  119. Morrison, T. J., et al. (2017). Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer. American Journal of Respiratory and Critical Care Medicine, 196(10), 1275–1286.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Phinney, D. G., et al. (2015). Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nature Communications, 6, 8472.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Perez-Hernandez, J., Redon, J., & Cortes, R. (2017) Extracellular vesicles as therapeutic agents in systemic lupus erythematosus. International Journal of Molecular Sciences, 18(4).

  122. Mokarizadeh, A., et al. (2012). Phenotypic modulation of auto-reactive cells by insertion of tolerogenic molecules via MSC-derived exosomes. Veterinary Research Forum, 3(4), 257–261.

    PubMed  PubMed Central  Google Scholar 

  123. Crain, S. K., et al. (2019). Extracellular vesicles from wharton’s jelly mesenchymal stem cells suppress CD4 expressing T cells through transforming growth factor beta and adenosine signaling in a canine model. Stem Cells and Development, 28(3), 212–226.

    CAS  PubMed  Google Scholar 

  124. Zhang, S., et al. (2018). MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials, 156, 16–27.

    CAS  PubMed  Google Scholar 

  125. Merino-Gonzalez, C., et al. (2016). Mesenchymal stem cell-derived extracellular vesicles promote angiogenesis: Potencial clinical application. Frontiers in Physiology, 7, 24.

    PubMed  PubMed Central  Google Scholar 

  126. Yin, K., Wang, S., & Zhao, R. C. (2019). Exosomes from mesenchymal stem/stromal cells: a new therapeutic paradigm. Biomarker Research, 7, 8.

    PubMed  PubMed Central  Google Scholar 

  127. Burrello, J., et al. (2016). Stem cell-derived extracellular vesicles and immune-modulation. Frontiers in Cell and Developmental Biology, 4, 83.

    PubMed  PubMed Central  Google Scholar 

  128. Wang, J., et al. (2015). The bone marrow microenvironment enhances multiple myeloma progression by exosome-mediated activation of myeloid-derived suppressor cells. Oncotarget, 6(41), 43992–44004.

    PubMed  PubMed Central  Google Scholar 

  129. Rebmann, V., et al. (2016). The potential of HLA-G-bearing extracellular vesicles as a future element in HLA-G immune biology. Frontiers in Immunology, 7, 173.

    PubMed  PubMed Central  Google Scholar 

  130. Zendedel, A., et al. (2016). Activation and regulation of NLRP3 inflammasome by intrathecal application of SDF-1a in a spinal cord injury model. Molecular Neurobiology, 53(5), 3063–3075.

    CAS  PubMed  Google Scholar 

  131. Lai, P., et al. (2018). A potent immunomodulatory role of exosomes derived from mesenchymal stromal cells in preventing cGVHD. Journal of Hematology & Oncology, 11(1), 135.

    CAS  Google Scholar 

  132. Fafián-Labora, J., et al. (2017). Effect of age on pro-inflammatory miRNAs contained in mesenchymal stem cell-derived extracellular vesicles. Scientific Reports, 7, 43923–43923.

    PubMed  PubMed Central  Google Scholar 

  133. Xie, K., et al. (2019). Exosomal miR-1246 derived from human umbilical cord blood mesenchymal stem cells attenuates hepatic ischemia reperfusion injury by modulating T helper 17/regulatory T balance. IUBMB Life, 71(12), 2020–2030.

    CAS  PubMed  Google Scholar 

  134. Fujii, S., et al. (2018). Graft-versus-host disease amelioration by human bone marrow mesenchymal stromal/stem cell-derived extracellular vesicles is associated with peripheral preservation of naive T cell populations. Stem Cells, 36(3), 434–445.

    CAS  PubMed  Google Scholar 

  135. Zhang, W., Wang, Y., & Kong, Y. (2019). Exosomes derived from mesenchymal stem cells modulate miR-126 to ameliorate hyperglycemia-induced retinal inflammation via targeting HMGB1. Investigative Ophthalmology & Visual Science, 60(1), 294–303.

    CAS  Google Scholar 

  136. Zhuansun, Y., et al. (2019). MSCs exosomal miR-1470 promotes the differentiation of CD4(+)CD25(+)FOXP3(+) Tregs in asthmatic patients by inducing the expression of P27KIP1. International Immunopharmacology, 77, 105981.

    CAS  PubMed  Google Scholar 

  137. Katz, G., et al. (2014). T cell receptor stimulation impairs IL-7 receptor signaling by inducing expression of the microRNA miR-17 to target Janus kinase 1. Science Signaling, 7(340), ra83.

    PubMed  PubMed Central  Google Scholar 

  138. Xin, H., et al. (2017). MicroRNA cluster miR-17-92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats. Stroke, 48(3), 747–753.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Z, W., et al. (2019). miRNA-181a over-expression in mesenchymal stem cell-derived exosomes influenced inflammatory response after myocardial ischemia-reperfusion injury. 232, 116632.

  140. Ma, M., et al. (2017). miRNA-221 of exosomes originating from bone marrow mesenchymal stem cells promotes oncogenic activity in gastric cancer. OncoTargets and Therapy, 10, 4161–4171.

    PubMed  PubMed Central  Google Scholar 

  141. Lu, F. B., et al. (2019). Attenuation of experimental autoimmune hepatitis in mice with bone mesenchymal stem cell-derived exosomes carrying microRNA-223-3. Molecules and Cells, 42(12), 906–918.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Hou, K., et al. (2020). Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. Journal of Neuroinflammation, 17(1), 46.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Mao, G., et al. (2018). Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A. Stem Cell Research & Therapy, 9(1), 247.

    CAS  Google Scholar 

  144. Soundara Rajan, T., et al. (2017). Human periodontal ligament stem cells secretome from multiple sclerosis patients suppresses NALP3 inflammasome activation in experimental autoimmune encephalomyelitis. International Journal of Immunopathology and Pharmacology, 30(3), 238–252.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Stables, M. J., et al. (2011). Transcriptomic analyses of murine resolution-phase macrophages. Blood, 118(26), e192–e208.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Harrell, C. R., et al. (2019). Molecular mechanisms responsible for therapeutic potential of mesenchymal stem cell-derived secretome. Cells, 8(5).

  147. Shigemoto-Kuroda, T., et al. (2017). MSC-derived extracellular vesicles attenuate immune responses in two autoimmune murine models: Type 1 diabetes and uveoretinitis. Stem Cell Reports, 8(5), 1214–1225.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Heo, J. S., Choi, Y., & Kim, H. O. (2019). Adipose-derived mesenchymal stem cells promote M2 macrophage phenotype through exosomes. Stem Cells International, 2019, 7921760.

    PubMed  PubMed Central  Google Scholar 

  149. Wang, B., et al. (2017). Pre-incubation with hucMSC-exosomes prevents cisplatin-induced nephrotoxicity by activating autophagy. Stem Cell Research & Therapy, 8(1), 75.

    Google Scholar 

  150. Blazquez, R., et al. (2014). Immunomodulatory potential of human adipose mesenchymal stem cells derived exosomes on in vitro stimulated T cells. Frontiers in Immunology, 5, 556.

    PubMed  PubMed Central  Google Scholar 

  151. Mauri, C., & Menon, M. (2017). Human regulatory B cells in health and disease: therapeutic potential. Journal of Clinical Investigation, 127(3), 772–779.

    Google Scholar 

  152. Bao, Y., & Cao, X. (2014). The immune potential and immunopathology of cytokine-producing B cell subsets: a comprehensive review. Journal of Autoimmunity, 55, 10–23.

    CAS  PubMed  Google Scholar 

  153. Ghia, P. (2018). From mice to men: How B cell immunology helped the understanding of leukemia development. Frontiers in Immunology, 9, 2402.

    PubMed  PubMed Central  Google Scholar 

  154. Deng, M., et al. (2019). Exosome-transmitted LINC00461 promotes multiple myeloma cell proliferation and suppresses apoptosis by modulating microRNA/BCL-2 expression. Cytotherapy, 21(1), 96–106.

    CAS  PubMed  Google Scholar 

  155. Carreras-Planella, L., et al. (2019). Immunomodulatory effect of MSC on B cells is independent of secreted extracellular vesicles. Frontiers in Immunology, 10, 1288.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Khare, D., et al. (2018). Mesenchymal stromal cell-derived exosomes affect mRNA expression and function of B-lymphocytes. Frontiers in Immunology, 9, 3053.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Crompot, E., et al. (2017). Extracellular vesicles of bone marrow stromal cells rescue chronic lymphocytic leukemia B cells from apoptosis, enhance their migration and induce gene expression modifications. Haematologica, 102(9), 1594–1604.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Adamo, A., et al. (2019). Extracellular vesicles mediate mesenchymal stromal cell-dependent regulation of B cell PI3K-AKT signaling pathway and actin cytoskeleton. Frontiers in Immunology, 10, 446.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Cho, K. S., et al. (2019). Dendritic cells and M2 macrophage play an important role in suppression of Th2-mediated inflammation by adipose stem cells-derived extracellular vesicles. Stem Cell Research, 39, 101500.

    CAS  PubMed  Google Scholar 

  160. Reis, M., et al. (2018). Mesenchymal stromal cell-derived extracellular vesicles attenuate dendritic cell maturation and function. Frontiers in Immunology, 9, 2538.

    PubMed  PubMed Central  Google Scholar 

  161. Song, N., et al. (2018). miR-21 protects against ischemia/reperfusion-induced acute kidney injury by preventing epithelial cell apoptosis and inhibiting dendritic cell maturation. Frontiers in Physiology, 9, 790.

    PubMed  PubMed Central  Google Scholar 

  162. Favaro, E., et al. (2016). Human mesenchymal stem cells and derived extracellular vesicles induce regulatory dendritic cells in type 1 diabetic patients. Diabetologia, 59(2), 325–333.

    CAS  Google Scholar 

  163. Fan, Y., et al. (2019). Human fetal liver mesenchymal stem cell-derived exosomes impair natural killer cell function. Stem Cells and Development, 28(1), 44–55.

    CAS  PubMed  Google Scholar 

  164. Jafarinia, M., et al. (2020). Mesenchymal stem cell-derived extracellular vesicles: A novel cell-free therapy. Immunological Investigations, 1–23.

  165. Zheng, J., et al. (2020). Bone marrow-derived mesenchymal stem cells-secreted exosomal microRNA-192-5p delays inflammatory response in rheumatoid arthritis. International Immunopharmacology, 78, 105985.

    CAS  PubMed  Google Scholar 

  166. Chen, Z., et al. (2018). Therapeutic potential of mesenchymal cell-derived miRNA-150-5p-expressing exosomes in rheumatoid arthritis mediated by the modulation of MMP14 and VEGF. Journal of Immunology, 201(8), 2472–2482.

    CAS  Google Scholar 

  167. Meng, H. Y., Chen, L. Q., & Chen, L. H. (2020). The inhibition by human MSCs-derived miRNA-124a overexpression exosomes in the proliferation and migration of rheumatoid arthritis-related fibroblast-like synoviocyte cell. BMC Musculoskeletal Disorders, 21(1), 150.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Liu, Y., et al. (2018). MSC-derived exosomes promote proliferation and inhibit apoptosis of chondrocytes via lncRNA-KLF3-AS1/miR-206/GIT1 axis in osteoarthritis. Cell Cycle, 17(21–22), 2411–2422.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Mahdipour, E., Salmasi, Z., & Sabeti, N. (2019). Potential of stem cell-derived exosomes to regenerate beta islets through Pdx-1 dependent mechanism in a rat model of type 1 diabetes. Journal of Cellular Physiology, 234(11), 20310–20321.

    CAS  PubMed  Google Scholar 

  170. Zhu, L. L., et al. (2018). Transplantation of adipose tissue-derived stem cell-derived exosomes ameliorates erectile function in diabetic rats. Andrologia, 50(2).

  171. Chen, C., et al. (2017). Mesenchymal stem cell transplantation in tight-skin mice identifies miR-151-5p as a therapeutic target for systemic sclerosis. Cell Research, 27(4), 559–577.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Bai, L., et al. (2018). Author correction: effects of mesenchymal stem cell-derived exosomes on experimental autoimmune uveitis. Scientific Reports, 8(1), 9889.

    PubMed  PubMed Central  Google Scholar 

  173. Chen, L., et al. (2018). BMSCs-derived miR-223-containing exosomes contribute to liver protection in experimental autoimmune hepatitis. Molecular Immunology, 93, 38–46.

    CAS  PubMed  Google Scholar 

  174. Zhou, B.-R., et al. (2013). The effect of conditioned media of adipose-derived stem cells on wound healing after ablative fractional carbon dioxide laser resurfacing. BioMed Research International, 2013, 519126–519126.

  175. Fukuoka, H., & Suga, H. (2015). Hair regeneration treatment using adipose-derived stem cell conditioned medium: Follow-up with trichograms. Eplasty, 15, e10–e10.

    PubMed  PubMed Central  Google Scholar 

  176. Chen, T. S., et al. (2010). Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Research, 38(1), 215–224.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (Grant No. 81802815, 31201052). The authors confirm independence from the sponsors; the content of the article has not been influenced by the sponsors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoling Zhang or Lisha Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Special Issue on Exosomes and Microvesicles: from Stem Cell Biology to Translation in Human Diseases

Guest Editor: Giovanni Camussi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, X., An, N., Ren, Y. et al. Immunosuppressive Effects of Mesenchymal Stem Cells-derived Exosomes. Stem Cell Rev and Rep 17, 411–427 (2021). https://doi.org/10.1007/s12015-020-10040-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-020-10040-7

Keywords

Navigation