Skip to main content
Log in

High-energy-density pentazolate salts: CaN10 and BaN10

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The search for high energy density materials (HEDMs) in polymeric nitrogen compounds has gained considerable attention. Previous theoretical predictions and experiments have revealed that metal ions can be used to stabilize the pentazolate (N 5 ) anion. In this work, by employing a machine learning-accelerated crystal structure searching method and first-principles calculations, we found that the new pentazolate salts, CaN10 and BaN10, are energetically favorable at high pressures. Phonon dispersion calculations reveal that they are quenchable at ambient pressure. Ab initio molecular dynamics simulations verify their dynamic stability at finite temperature. Bader charge and electron localization function illustrates that alkaline earth atoms serve as electron donors, contributing to the stability of N5 rings. Bonding calculations reveal covalent bonds between nitrogen atoms and weak interactions between N5 rings. Similar to other pentazolate salts, these polymeric nitrides have high energy densities of approximately 2.35 kJ/g for CaN10 and 1.32 kJ/g for BaN10. The predictions of CaN10 and BaN10 structures indicate that these salts are potential candidates for green nitrogen-rich HEDMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. P. Stevenson, J. Am. Chem. Soc. 77, 2350 (1955).

    Google Scholar 

  2. C. Mailhiot, L. H. Yang, and A. K. McMahan, Phys. Rev. B 46, 14419 (1992).

    ADS  Google Scholar 

  3. A. Vij, W. W. Wilson, V. Vij, F. S. Tham, J. A. Sheehy, and K. O. Christe, J. Am. Chem. Soc. 123, 6308 (2001).

    Google Scholar 

  4. M. I. Eremets, A. G. Gavriliuk, I. A. Trojan, D. A. Dzivenko, and R. Boehler, Nat. Mater. 3, 558 (2004).

    ADS  Google Scholar 

  5. B. A. Steele, E. Stavrou, J. C. Crowhurst, J. M. Zaug, V. B. Prakapenka, and I. I. Oleynik, Chem. Mater. 29, 735 (2017).

    Google Scholar 

  6. D. Laniel, G. Weck, G. Gaiffe, G. Garbarino, and P. Loubeyre, J. Phys. Chem. Lett. 9, 1600 (2018).

    Google Scholar 

  7. A. F. Goncharov, E. Gregoryanz, H. Mao, Z. Liu, and R. J. Hemley, Phys. Rev. Lett. 85, 1262 (2000).

    ADS  Google Scholar 

  8. M. I. Eremets, R. J. Hemley, H. Mao, and E. Gregoryanz, Nature 411, 170 (2001).

    ADS  Google Scholar 

  9. M. M. G. Alemany, and J. L. Martins, Phys. Rev. B 68, 024110 (2003).

    ADS  Google Scholar 

  10. W. D. Mattson, D. Sanchez-Portal, S. Chiesa, and R. M. Martin, Phys. Rev. Lett. 93, 125501 (2004).

    ADS  Google Scholar 

  11. F. Zahariev, A. Hu, J. Hooper, F. Zhang, and T. Woo, Phys. Rev. B 72, 214108 (2005).

    ADS  Google Scholar 

  12. J. Uddin, V. Barone, and G. E. Scuseria, Mol. Phys. 104, 745 (2006).

    ADS  Google Scholar 

  13. M. J. Lipp, J. P. Klepeis, B. J. Baer, H. Cynn, W. J. Evans, V. Iota, and C. S. Yoo, Phys. Rev. B 76, 014113 (2007).

    ADS  Google Scholar 

  14. Y. Yao, J. S. Tse, and K. Tanaka, Phys. Rev. B. 77, 052103 (2008).

    ADS  Google Scholar 

  15. Y. Ma, A. R. Oganov, Z. Li, Y. Xie, and J. Kotakoski, Phys. Rev. Lett. 102, 065501 (2009).

    ADS  Google Scholar 

  16. X. Wang, Y. Wang, M. Miao, X. Zhong, J. Lv, T. Cui, J. Li, L. Chen, C. J. Pickard, and Y. Ma, Phys. Rev. Lett. 109, 175502 (2012).

    ADS  Google Scholar 

  17. J. Sun, M. Martinez-Canales, D. D. Klug, C. J. Pickard, and R. J. Needs, Phys. Rev. Lett. 111, 175502 (2013), arXiv: 1210.4358.

    ADS  Google Scholar 

  18. D. Tomasino, M. Kim, J. Smith, and C. S. Yoo, Phys. Rev. Lett. 113, 205502 (2014).

    ADS  Google Scholar 

  19. Y. Hu, P. Huang, L. Guo, X. Wang, and C. Zhang, Phys. Lett. A 359, 728 (2006).

    ADS  Google Scholar 

  20. S. Zhang, J. Zhou, Q. Wang, and P. Jena, J. Phys. Chem. C. 120, 3993 (2016).

    Google Scholar 

  21. W. Sun, A. Holder, B. Orvañanos, E. Arca, A. Zakutayev, S. Lany, and G. Ceder, Chem. Mater. 29, 6936 (2017).

    Google Scholar 

  22. S. Yu, B. Huang, Q. Zeng, A. R. Oganov, L. Zhang, and G. Frapper, J. Phys. Chem. C. 121, 11037 (2017).

    Google Scholar 

  23. S. Wei, D. Li, Z. Liu, W. Wang, F. Tian, K. Bao, D. Duan, B. Liu, and T. Cui, J. Phys. Chem. C 121, 9766 (2017).

    Google Scholar 

  24. V. S. Bhadram, H. Liu, E. Xu, T. Li, V. B. Prakapenka, R. Hrubiak, S. Lany, and T. A. Strobel, Phys. Rev. Mater. 2, 011602 (2018).

    Google Scholar 

  25. Y. Li, X. Feng, H. Liu, J. Hao, S. A. T. Redfern, W. Lei, D. Liu, and Y. Ma, Nat. Commun. 9, 722 (2018).

    ADS  Google Scholar 

  26. L. Lei, and L. Zhang, Matter Radiat. Extremes 3, 95 (2018).

    Google Scholar 

  27. F. Shang, R. Liu, J. Liu, P. Zhou, C. Zhang, S. Yin, and K. Han, J. Phys. Chem. Lett. 11, 1030 (2020).

    Google Scholar 

  28. X. Shi, Z. Yao, and B. Liu, J. Phys. Chem. C 124, 4044 (2020).

    Google Scholar 

  29. M. T. Nguyen, and T. K. Ha, Chem. Ber. 129, 1157 (1996).

    Google Scholar 

  30. K. O. Christe, W. W. Wilson, J. A. Sheehy, and J. A. Boatz, Angew. Chem. Int. Ed. 38, 2004 (1999).

    Google Scholar 

  31. D. Forster, and W. D. W. Horrocks Jr., Inorg. Chem. 5, 1510 (1966).

    Google Scholar 

  32. E. H. Younk, and A. B. Kunz, Int. J. Quant. Chem. 63, 615 (1997).

    Google Scholar 

  33. P. Nockemann, U. Cremer, U. Ruschewitz, and G. Meyer, Z. Anorg. Allg. Chem. 629, 2079 (2003).

    Google Scholar 

  34. D. Laniel, B. Winkler, E. Koemets, T. Fedotenko, M. Bykov, E. Bykova, L. Dubrovinsky, and N. Dubrovinskaia, Nat. Commun. 10, 4515 (2019).

    ADS  Google Scholar 

  35. C. Zhang, C. Sun, B. Hu, C. Yu, and M. Lu, Science 355, 374 (2017).

    ADS  Google Scholar 

  36. Y. Xu, Q. Wang, C. Shen, Q. Lin, P. Wang, and M. Lu, Nature 549, 78 (2017).

    ADS  Google Scholar 

  37. F. Peng, Y. Yao, H. Liu, and Y. Ma, J. Phys. Chem. Lett. 6, 2363 (2015).

    Google Scholar 

  38. X. Zhang, J. Yang, M. Lu, and X. Gong, RSC Adv. 5, 21823 (2015).

    ADS  Google Scholar 

  39. B. A. Steele, and I. I. Oleynik, Chem. Phys. Lett. 643, 21 (2016), arXiv: 1511.01879.

    ADS  Google Scholar 

  40. C. Choi, H.-W. Yoo, E. M. Goh, S. G. Cho, and Y. Jung, J. Phys. Chem. A. 120, 4249 (2016).

    Google Scholar 

  41. A. S. Williams, B. A. Steele, and I. I. Oleynik, J. Chem. Phys. 147, 234701 (2017).

    Google Scholar 

  42. D. Laniel, G. Weck, and P. Loubeyre, Inorg. Chem. 57, 10685 (2018).

    Google Scholar 

  43. B. Huang, and G. Frapper, Chem. Mater. 30, 7623 (2018).

    Google Scholar 

  44. K. Xia, X. Zheng, J. Yuan, C. Liu, H. Gao, Q. Wu, and J. Sun, J. Phys. Chem. C 123, 10205 (2019).

    Google Scholar 

  45. K. Xia, J. Yuan, X. Zheng, C. Liu, H. Gao, Q. Wu, and J. Sun, J. Phys. Chem. Lett. 10, 6166 (2019).

    Google Scholar 

  46. S. Zhu, F. Peng, H. Liu, A. Majumdar, T. Gao, and Y. Yao, Inorg. Chem. 55, 7550 (2016).

    Google Scholar 

  47. P. Hou, L. Lian, Y. Cai, B. Liu, B. Wang, S. Wei, and D. Li, RSC Adv. 8, 4314 (2018).

    ADS  Google Scholar 

  48. K. Xia, H. Gao, C. Liu, J. Yuan, J. Sun, H. T. Wang, and D. Xing, Sci. Bull. 63, 817 (2018).

    Google Scholar 

  49. C. Liu, H. Gao, Y. Wang, R. J. Needs, C. J. Pickard, J. Sun, H. T. Wang, and D. Xing, Nat. Phys. 15, 1065 (2019).

    Google Scholar 

  50. J. Wu, Z. Feng, J. Wang, Q. Chen, C. Ding, T. Chen, Z. Guo, J. Wen, Y. Shi, D. Xing, and J. Sun, Phys. Rev. B 100, 060103 (2019).

    ADS  Google Scholar 

  51. Q. Gu, D. Xing, and J. Sun, Chin. Phys. Lett. 36, 097401 (2019), arXiv: 1908.01302.

    ADS  Google Scholar 

  52. C. Liu, H. Gao, A. Hermann, Y. Wang, M. Miao, C. J. Pickard, R. J. Needs, H. T. Wang, D. Xing, and J. Sun, Phys. Rev. X 10, 021007 (2020).

    Google Scholar 

  53. G. Kresse, and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    ADS  Google Scholar 

  54. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008), arXiv: 0707.2088.

    ADS  Google Scholar 

  55. G. Kresse, and D. Joubert, Phys. Rev. B. 59, 1758 (1999).

    ADS  Google Scholar 

  56. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    ADS  Google Scholar 

  57. A. Togo, and I. Tanaka, Scripta Mater. 108, 1 (2015).

    ADS  Google Scholar 

  58. S. Maintz, V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, J. Comput. Chem. 34, 2557 (2013).

    Google Scholar 

  59. S. Maintz, V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, J. Comput. Chem. 37, 1030 (2016).

    Google Scholar 

  60. A. Otero-de-la-Roza, M. A. Blanco, A. M. Pendas, and V. Luana, Comput. Phys. Commun. 180, 157 (2009).

    ADS  Google Scholar 

  61. A. Otero-de-la-Roza, E. R. Johnson, and V. Luana, Comput. Phys. Commun. 185, 1007 (2014).

    ADS  Google Scholar 

  62. K. Momma, and F. Izumi, J. Appl. Cryst. 44, 1272 (2011).

    Google Scholar 

  63. M. J. Kamlet, and S. J. Jacobs, J. Chem. Phys. 48, 23 (1968).

    ADS  Google Scholar 

  64. J. Zhang, A. R. Oganov, X. Li, and H. Niu, Phys. Rev. B 95, 020103 (2017).

    ADS  Google Scholar 

  65. R. Y. Rohling, I. C. Tranca, E. J. M. Hensen, and E. A. Pidko, J. Phys. Chem. C 123, 2843 (2019).

    Google Scholar 

  66. V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, J. Phys. Chem. A 115, 5461 (2011).

    Google Scholar 

  67. E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen, and W. Yang, J. Am. Chem. Soc. 132, 6498 (2010).

    Google Scholar 

  68. V. Riffet, J. Contreras-García, J. Carrasco, and M. Calatayud, J. Phys. Chem. C 120, 4259 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Sun.

Additional information

Jian Sun gratefully acknowledges the financial support from the National Key R&D Program of China (Grant No. 2016YFA0300404), the National Natural Science Foundation of China (Grant Nos. 11974162, and 11834006), and the Fundamental Research Funds for the Central Universities. Kang Xia acknowledges the financial support from the Project funded by China Postdoctoral Science Foundation (Grant No. 2019M651767). The calculations were carried out using supercomputers at the High Performance Computing Center of Collaborative Innovation Center of Advanced Microstructures, the High Performance Supercomputing Center of Nanjing University, “Tianhe-2” at National Supercomputer Center-Guangzhou.

Supporting Information

The supporting information is available online at phys.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Material for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Xia, K., Wu, J. et al. High-energy-density pentazolate salts: CaN10 and BaN10. Sci. China Phys. Mech. Astron. 64, 218211 (2021). https://doi.org/10.1007/s11433-020-1595-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1595-2

Navigation