Skip to main content
Log in

Fedosov dg manifolds associated with Lie pairs

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Given any pair (LA) of Lie algebroids, we construct a differential graded manifold \((L[1]\oplus L/A,Q)\), which we call Fedosov dg manifold. We prove that the homological vector field Q constructed on \(L[1]\oplus L/A\) by the Fedosov iteration method arises as a byproduct of the Poincaré–Birkhoff–Witt map established in  [18]. Finally, using the homological perturbation lemma, we establish a quasi-isomorphism of Dolgushev–Fedosov type: the differential graded algebras of functions on the dg manifolds \((A[1],d_A)\) and \((L[1]\oplus L/A,Q)\) are homotopy equivalent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We adopt the following convention for the multiplication in a groupoid \(\mathscr {L}\rightrightarrows M\) with source map \(s:\mathscr {L}\rightarrow M\) and target map \(t:\mathscr {L}\rightarrow M\): given two elements g and h of \(\mathscr {L}\), their product gh is defined only if the target of h coincides with the source of g, i.e. if \(s(g)=t(h)\) in M. With this convention, we have \(s(gh)=s(h)\) and \(t(gh)=t(g)\). Hence, left translation by g maps the target-fiber \(t^{-1}\big (s(g)\big )\) to the target-fiber \(t^{-1}\big (t(g)\big )\). Consequently, the left invariant vector fields on \(\mathscr {L}\) are necessarily tangent to the fibers of the target map.

  2. We are grateful to an anonymous referee for pointing out the relation between the Koszul complex—see  [12]—and our initial construction as set forth in an earlier version of our manuscript.

References

  1. Alexandrov, M., Schwarz, A., Zaboronsky, O., Kontsevich, M.: The geometry of the master equation and topological quantum field theory. Int. J. Modern Phys. A 12(7), 1405–1429 (1997)

    Article  MathSciNet  Google Scholar 

  2. Bandiera, R., Stiénon, M., Xu, P.: Polyvector fields and polydifferential operators associated with Lie pairs (2019). arXiv:1901.04602

  3. Batakidis, P., Voglaire, Y.: Atiyah classes and dg-Lie algebroids for matched pairs. J. Geom. Phys. 123, 156–172 (2018)

    Article  MathSciNet  Google Scholar 

  4. Blom, A., Posthuma, H.: An index theorem for Lie algebroids (2015). arXiv:1512.07863

  5. Bott, R.: Lectures on characteristic classes and foliations. Lectures on algebraic and differential topology (Second Latin American School in Math., Mexico City, 1971), Springer, Berlin, 1972, Notes by Lawrence Conlon, with two appendices by J. Stasheff, pp. 1–94. Lecture Notes in Math., Vol. 279

  6. Brown, R.: The twisted Eilenberg-Zilber theorem, Simposio di Topologia (Messina, 1964), Edizioni Oderisi, Gubbio, pp. 33–37 (1965)

  7. Chen, Z., Stiénon, M., Xu, P.: From Atiyah classes to homotopy Leibniz algebras. Comm. Math. Phys. 341(1), 309–349 (2016)

    Article  MathSciNet  Google Scholar 

  8. Dolgushev, V.: Covariant and equivariant formality theorems. Adv. Math. 191(1), 147–177 (2005)

    Article  MathSciNet  Google Scholar 

  9. Eilenberg, S., MacLane, S.: On the groups of \(H(\Pi, n)\). I. Ann. Math. 2(58), 55–106 (1953)

    Article  Google Scholar 

  10. Emmrich, C., Weinstein, A.: The differential geometry of Fedosov’s quantization. Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, pp. 217–239 (1994)

  11. Fedosov, B.V.: A simple geometrical construction of deformation quantization. J. Differ. Geom. 40(2), 213–238 (1994)

    Article  MathSciNet  Google Scholar 

  12. Guillemin, V.W., Sternberg, S.: Supersymmetry and equivariant de Rham theory. Mathematics Past and Present, Springer-Verlag, Berlin (1999) With an appendix containing two reprints by Henri Cartan

  13. Gutt, S.: An explicit \(\star \)-product on the cotangent bundle of a Lie group. Lett. Math. Phys. 7(3), 249–258 (1983)

    Article  MathSciNet  Google Scholar 

  14. Herbig, H.-C.: Variations on homological reduction (2007). arXiv:0708.3598

  15. Huebschmann, J., Kadeishvili, T.: Small models for chain algebras. Math. Z. 207(2), 245–280 (1991)

    Article  MathSciNet  Google Scholar 

  16. Landsman, N.P.: Strict deformation quantization of a particle in external gravitational and Yang-Mills fields. J. Geom. Phys. 12(2), 93–132 (1993)

    Article  MathSciNet  Google Scholar 

  17. Landsman, N.P.: Classical and quantum representation theory. In: Proceedings Seminar 1989–1990 Mathematical Structures in Field Theory (Amsterdam), CWI Syllabi, vol. 39, Math. Centrum, Centrum Wisk. Inform., Amsterdam, 1996, pp. 135–163

  18. Laurent-Gengoux, C., Stiénon, M., Xu, P.: Poincaré–Birkhoff–Witt isomorphisms and Kapranov dg-manifolds (2014). arXiv:1408.2903

  19. Liao, H.-Y., Stiénon, M.: Formal exponential map for graded manifolds, Int. Math. Res. Not. IMRN (2019), no. 3, 700–730

  20. Liao, H.-Y., Stiénon, M., Xu, P.: Formality theorem for \(\mathfrak{g}\)-manifolds. C. R. Math. Acad. Sci. Paris 355(5), 582–589 (2017)

    Article  MathSciNet  Google Scholar 

  21. Liao, H.-Y., Stiénon, M., Xu, P.: Formality theorem for differential graded manifolds. C. R. Math. Acad. Sci. Paris 356(1), 27–43 (2018)

    Article  MathSciNet  Google Scholar 

  22. Liao, H.-Y., Stiénon, M., Xu, P.: Formality and Kontsevich–Duflo type theorems for Lie pairs. Adv. Math. 352, 406–482 (2019)

    Article  MathSciNet  Google Scholar 

  23. Lu, J.-H.: Poisson homogeneous spaces and Lie algebroids associated to Poisson actions. Duke Math. J. 86(2), 261–304 (1997)

    Article  MathSciNet  Google Scholar 

  24. Mackenzie, K.C.H., Mokri, T.: Locally vacant double Lie groupoids and the integration of matched pairs of Lie algebroids. Geom. Dedicata 77(3), 317–330 (1999)

    Article  MathSciNet  Google Scholar 

  25. Mehta, R.A.: Supergroupoids, double structures, and equivariant cohomology, ProQuest LLC, Ann Arbor, MI, Thesis (Ph.D.)–University of California, Berkeley (2006)

  26. Mehta, R.A.: \(Q\)-algebroids and their cohomology. J. Symplectic Geom. 7(3), 263–293 (2009)

    Article  MathSciNet  Google Scholar 

  27. Moerdijk, I., Mrčun, J.: On the universal enveloping algebra of a Lie algebroid. Proc. Am. Math. Soc. 138(9), 3135–3145 (2010)

    Article  MathSciNet  Google Scholar 

  28. Mokri, T.: Matched pairs of Lie algebroids. Glasgow Math. J. 39(2), 167–181 (1997)

    Article  MathSciNet  Google Scholar 

  29. Nistor, V., Weinstein, A., Xu, P.: Pseudodifferential operators on differential groupoids. Pacific J. Math. 189(1), 117–152 (1999)

    Article  MathSciNet  Google Scholar 

  30. Rinehart, G.S.: Differential forms on general commutative algebras. Trans. Am. Math. Soc. 108, 195–222 (1963)

    Article  MathSciNet  Google Scholar 

  31. Xu, P.: Quantum groupoids. Comm. Math. Phys. 216(3), 539–581 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Ruggero Bandiera, Panagiotis Batakidis, Martin Bordemann, Damien Broka, Vasily Dolgushev, Olivier Elchinger, Camille Laurent-Gengoux, Hsuan-Yi Liao, Kirill Mackenzie, Rajan Mehta, and Yannick Voglaire for fruitful discussions and useful comments. Stiénon is grateful to Université Paris 7 for its hospitality during his sabbatical leave in 2015–2016. We are grateful to the anonymous referee for many insightful comments and suggestions which led to significant improvements in exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Xu.

Additional information

Communicated by Thomas Schick.

Dedicated to the memory of our colleague and friend John Roe.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research partially supported by NSF grants DMS-1707545, DMS-1406668 and DMS-1101827, and NSA grant H98230-14-1-0153.

Appendix A. Homological perturbation

Appendix A. Homological perturbation

A contraction of a cochain complex \((N,\delta )\) onto a cochain complex (Md) consists of a pair of cochain maps \(\sigma :N\rightarrow M\) and \(\tau :M\rightarrow N\) and an endomorphism \(h:N\rightarrow N[-1]\) of the graded module N satisfying the following five relations:

$$\begin{aligned}&\sigma \tau ={{\,\mathrm{id}\,}}_M, \qquad \tau \sigma -{{\,\mathrm{id}\,}}_N=h\delta +\delta h, \\&\sigma h=0, \qquad h\tau =0, \qquad h^2=0 . \end{aligned}$$

We symbolize such a contraction by a diagram

figure p

If, furthermore, the cochain complexes N and M are filtered and the maps \(\sigma \), \(\tau \), and h preserve the filtration, the contraction is said to be filtered [9, §12].

A descending filtration

$$\begin{aligned} \cdots \subseteq F_{p+1}N \subseteq F_{p}N \subseteq F_{p-1}N \subseteq \cdots \end{aligned}$$

on a cochain complex N is said to be exhaustive if \(N=\bigcup _p F_p N\) and complete if \(N=\varprojlim _p \frac{N}{F_p N}\).

A perturbation of the filtered cochain complex

figure q

is an operator \(\varrho \) of degree \(+1\) on N, which raises the filtration degree by 1 (i.e. \(\varrho (F_{p} N)\subseteq F_{p+1} N\)) and satisfies \((\delta +\varrho )^2=0\) so that \(\delta +\varrho \) is a new coboundary operator on N.

We refer the reader to  [15, §1] for a brief history of the following lemma.

Lemma A.1

(Homological Perturbation [6]) Let

figure r

be a filtered contraction. Given a perturbation \(\varrho \) of the cochain complex \((N,\delta )\), if the filtrations on M and N are exhaustive and complete, then the series

$$\begin{aligned} \breve{\tau }&:=\sum _{k=0}^{\infty }(h\varrho )^k\tau&\breve{h}&:=\sum _{k=0}^{\infty }(h\varrho )^k h=\sum _{k=0}^{\infty }h(\varrho h)^k \\ \breve{\sigma }&:=\sum _{k=0}^{\infty }\sigma (\varrho h)^k&\vartheta&:=\sum _{k=0}^{\infty }\sigma (\varrho h)^k\varrho \tau =\sum _{k=0}^{\infty }\sigma \varrho (h\varrho )^k\tau \end{aligned}$$

converge, \(\vartheta \) is a perturbation of the cochain complex (Md), and

figure s

constitutes a new filtered contraction.

Proposition A.2

Under the same hypothesis as in Lemma A.1, the chain map \(\breve{\tau }\) is entirely determined by \(\tau \), \(h\varrho \) and the relation \(({{\,\mathrm{id}\,}}-h\varrho )\breve{\tau }=\tau \). Likewise, the homotopy operator \(\breve{h}\) is entirely determined by h, \(h\varrho \) and the relation \(({{\,\mathrm{id}\,}}-h\varrho )\breve{h}=h\).

Proof

Since the filtration on N is complete and \(\varrho \) raises the filtration degree by 1 while h preserves it, the geometric series \(\sum _{k=0}^\infty (h\varrho )^k\) converges and its sum is the inverse of the operator \({{\,\mathrm{id}\,}}-h\varrho \). The result follows immediately. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stiénon, M., Xu, P. Fedosov dg manifolds associated with Lie pairs. Math. Ann. 378, 729–762 (2020). https://doi.org/10.1007/s00208-020-02012-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-020-02012-6

Navigation