Skip to main content
Log in

Strong Stability Preserving Second Derivative General Linear Methods with Runge–Kutta Stability

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we describe the construction of second derivative general linear method with Runge–Kutta stability property preserving the strong stability properties of spatial discretizations. Then we present such methods that are obtained by the solution of the constrained minimization problem with nonlinear inequality constraints, corresponding to the strong stability preserving property of these methods, and equality constraints, corresponding to the order, stage order and Runge–Kutta stability conditions. The derived methods are of order \(p=q\) with \(r=2\) and \(s=p\) or \(s=p+1\), of order \(p=q=s=r-1\) and of order \(p=q+1=s=r\), where q, s and r are the stage order, the number of internal and the number of external stages, respectively. Efficiency of the proposed methods together with verification of the order of convergence and capability of these methods in solving partial differential equations with smooth and discontinues initial data are shown by some numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Abdi, A., Hojjati, G.: Maximal order for second derivative general linear methods with Runge–Kutta stability. Appl. Numer. Math. 61, 1046–1058 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Abdi, A., Behzad, B.: Efficient Nordsieck second derivative general linear methods: construction and implementation. Calcolo 55(28), 1–16 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Abdi, A., Braś, M., Hojjati, G.: On the construction of second derivative diagonally implicit multistage integration methods. Appl. Numer. Math. 76, 1–18 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Abdi, A., Hojjati, G.: Implementation of Nordsieck second derivative methods for stiff ODEs. Appl. Numer. Math. 94, 241–253 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Balsara, D.S., Shu, C.-W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160, 405–452 (2000)

    MathSciNet  MATH  Google Scholar 

  6. Butcher, J.C., Hojjati, G.: Second derivative methods with RK stability. Numer. Algorithms 40, 415–429 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Califano, G., Izzo, G., Jackiewicz, Z.: Strong stability preserving general linear methods with Runge–Kutta stability. J. Sci. Comput. 76, 943–968 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Christlieb, A.J., Gottlieb, S., Grant, Z.J., Seal, D.C.: Explicit strong stability preserving multistage two-derivative time-stepping schemes. J. Sci. Comput. 68, 914–942 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Constantinescu, E.M., Sandu, A.: Optimal explicit strong-stability-preserving general linear methods. J. Sci. Comput. 32, 3130–3150 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Dahlquist, G.: A special stability problem for linear multistep methods. BIT 3, 2743 (1963)

    MathSciNet  Google Scholar 

  11. Ferracina, L., Spijker, M.N.: An extension and analysis of the Shu–Osher representation of Runge–Kutta methods. Math. Comput. 74, 201–219 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Ferracina, L., Spijker, M.N.: Stepsize restrictions for the total-variation-boundedness in general Runge–Kutta procedures. Appl. Numer. Math. 53, 265–279 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Ferracina, L., Spijker, M.N.: Strong stability of singly-diagonally-implicit Runge–Kutta methods. Appl. Numer. Math. 58, 1675–1686 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Grant, Z., Gottlieb, S., Seal, D.C.: A strong stability preserving analysis for multistage two-derivative time-stepping schemes based on Taylor series conditions. Commun. Appl. Math. Comput. 1, 21–59 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Gottlieb, S.: On high order strong stability preserving Runge–Kutta methods and multistep time discretizations. J. Sci. Comput. 25, 105–127 (2005)

    MathSciNet  MATH  Google Scholar 

  16. Gottlieb, S., Ketcheson, D.I., Shu, Chi-Wang: High order strong stability preserving time discretizations. J. Sci. Comput. 38, 251–289 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Gottlieb, S., Ketcheson, D.I., Shu, C.-W.: Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific, Hackensack (2011)

    MATH  Google Scholar 

  18. Gottlieb, S., Ruuth, S.J.: Optimal strong-stability-preserving time stepping schemes with fast downwind spatial discretizations. J. Sci. Comput. 27, 289–303 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    MathSciNet  MATH  Google Scholar 

  20. Hesthaven, J., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time Dependent Problems. Cambridge monographs of applied and computational mathematics. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  21. Higueras, I.: On strong stability preserving time discretization methods. J. Sci. Comput. 21, 193–223 (2004)

    MathSciNet  MATH  Google Scholar 

  22. Higueras, I.: Monotonicity for Runge–Kutta methods: inner product norms. J. Sci. Comput. 24, 97–117 (2005)

    MathSciNet  MATH  Google Scholar 

  23. Higueras, I.: Representations of Runge–Kutta methods and strong stability preserving methods. SIAM J. Numer. Anal. 43, 924–948 (2005)

    MathSciNet  MATH  Google Scholar 

  24. Hundsdorfer, W., Ruuth, S.J.: On monotonicity and boundedness properties of linear multistep methods. Math. Comput. 75, 655–672 (2005)

    MathSciNet  MATH  Google Scholar 

  25. Hundsdorfer, W., Ruuth, S.J., Spiteri, R.J.: Monotonicity-preserving linear multistep methods. SIAM J. Numer. Anal. 41, 605–623 (2003)

    MathSciNet  MATH  Google Scholar 

  26. Izzo, G., Jackiewicz, Z.: Strong stability preserving transformed DIMSIMs. J. Comput. Appl. Math. 343, 174–188 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Izzo, G., Jackiewicz, Z.: Strong stability preserving general linear methods. J. Sci. Comput. 65, 271–298 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Izzo, G., Jackiewicz, Z.: Strong stability preserving multistage integration methods. Math. Model. Anal. 20, 552–577 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Jackiewicz, Z.: General Linear Methods for Ordinary Differential Equations. Wiley, Hoboken (2009)

    MATH  Google Scholar 

  30. Jackiewicz, Z., Tracogna, S.: A general class of two-step Runge–Kutta methods for ordinary differential equations. SIAM J. Numer. Anal. 32, 1390–1427 (1995)

    MathSciNet  MATH  Google Scholar 

  31. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    MathSciNet  MATH  Google Scholar 

  32. Ketcheson, D.I., Gottlieb, S., Macdonald, C.B.: Strong stability preserving two-step Runge–Kutta methods. SIAM J. Numer. Anal. 49, 2618–2639 (2011)

    MathSciNet  MATH  Google Scholar 

  33. Moradi, A., Farzi, J., Abdi, A.: Strong stability preserving second derivative general linear methods. J. Sci. Comput. 81, 392–435 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Moradi, A., Farzi, J., Abdi, A.: Order conditions for second derivative general linear methods. J. Comput. Appl. Math. (to appear)

  35. Moradi, A., Abdi, A., Farzi, J.: Strong stability preserving diagonally implicit multistage integration methods. Appl. Numer. Math. 150, 536–558 (2020)

    MathSciNet  MATH  Google Scholar 

  36. Ruuth, S.J., Hundsdorfer, W.: High-order linear multistep methods with general monotonicity and boundedness properties. J. Comput. Phys. 209, 226–248 (2005)

    MathSciNet  MATH  Google Scholar 

  37. Seal, D.C., Guclu, Y., Christlieb, A.J.: High-order multiderivative time integrators for hyperbolic conservation laws. J. Sci. Comput. 60, 101–140 (2014)

    MathSciNet  MATH  Google Scholar 

  38. Spijker, M.N.: Stepsize conditions for general monotonicity in numerical initial value problems. SIAM J. Numer. Anal. 45, 1226–1245 (2007)

    MathSciNet  MATH  Google Scholar 

  39. Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal. 40, 469–491 (2002)

    MathSciNet  MATH  Google Scholar 

  40. Shu, C.-W.: Total-variation diminishing time discretizations. J. Sci. Comput. 9, 1073–1084 (1988)

    MathSciNet  MATH  Google Scholar 

  41. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    MathSciNet  MATH  Google Scholar 

  42. Tsai, A.Y.J., Chan, R.P.K., Wang, S.: Two-derivative Runge–Kutta methods for PDEs using a novel discretization approach. Numer. Algorithms 65, 687–703 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Abdi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, A., Abdi, A. & Farzi, J. Strong Stability Preserving Second Derivative General Linear Methods with Runge–Kutta Stability. J Sci Comput 85, 1 (2020). https://doi.org/10.1007/s10915-020-01306-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01306-w

Keywords

Mathematics Subject Classification

Navigation