Skip to main content
Log in

Phosphorus Dopant Diffusion, Activation, and Annealing. Using Infrared Laser for Synthesis of n-Type Silicon Thin Film

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Thin film of oriented crystalline intrinsic polysilicon films were grown on alkali-free borosilicate glass substrate using hot-wire chemical-vapor-deposition (HWCVD) technique. A layer as a source of phosphorus dopant on top of intrinsic polysilicon films were introduced in two different approaches: (i) spinon one-micrometer-thick phosphorus dopant and (ii) phosphorus ion implantation. We investigate the possibility of dopant diffusion, activation, and annealing, using the irradiation of 1064 nm wavelength infrared laser. The annealing is performed under various conditions. The laser power and scan speed are varied to ensure the suitable laser annealing condition. We carry out resistivity measurements to validate the laser annealing process. For structural investigation, we use several characterization techniques, such as scanning electron microscopy, high-resolution X-ray diffraction, photoluminescence spectroscopy, and confocal Raman spectroscopy measurements. We use optical transmission spectra for determining optical characteristics of the film. The electrical measurement shows that the phosphorous-doped n-type polysilicon films are suitable as an emitter layer in photovoltaic device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. G. Aberle and P. I. Widenborg, “Crystalline silicon thin-film solar cells via high-temperature and intermediate temperature approach,” in: Handbook of Photovoltaic Science and Engineering, John Wiley, Oxford, UK (2011), p. 452.

    Google Scholar 

  2. V. S. Waman, A. M. Funde, M. M. Kamble, et al., J. Nanotechnol., 2011, 242398 (2011).

    Article  Google Scholar 

  3. S. Halindintwali, D. Knoesen, R. Swanepoel, et al., S. Afr. J. Sci., 105, 290 (2009).

    Google Scholar 

  4. S. K. Soni, A. Phatak, and R. O. Dusane, Solar Energy Mater. Solar Cells, 94, 1512 (2010).

    Article  Google Scholar 

  5. A. G. Benvenuto, R. H. Buitrago, and J. A. Schmidt, Chem. Vapor Depos., 21, 54 (2015).

    Article  Google Scholar 

  6. S. Oosterhoff, “Distributions of boron and phosphorus implanted in silicon in the energy range 0.1 – 1.5 MeV,” in: Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms (1988), Vol. 30, p. 1.

  7. Y. Tang, G. Wang, Z. Hu, et al., Mater. Sci. Semiconductor Process., 15, 359 (2012),

    Article  Google Scholar 

  8. D. Adhikari, M. M. Junda, C. R. Grice, et al., Materials, 12, 1699 (2019).

    Article  ADS  Google Scholar 

  9. A. T. Fiory, S. G. Chawda, S. Madishetty, et al., “Rapid thermal activation and diffusion of boron and phosphorus implants,” in: 9th International Conference on Advanced Thermal Processing of Semiconductors, Anchorage, AK, USA, 2001, p. 227; https://doi.org/10.1109/RTP.2001.1013770.

  10. S.-Y. Lien, B.-R. Wu, H.-Y. Mao, et al., Thin Solid Films, 496, 643 (2006).

    Article  ADS  Google Scholar 

  11. P. A. Danilov, A. A. Ionin, R. A. Khmelnitskii, et al., J. Russ. Laser Res., 38, 185 (2017).

    Article  Google Scholar 

  12. Y. Tang, G. Wang, Z. Hu, et al., Mater. Sci. Semiconductor Process., 15, 359 (2012).

    Article  Google Scholar 

  13. T. L. Alford, D. C. Thompson, J. W. Mayer, and N. D. Theodore, J. Appl. Phys., 106, 114902 (2009).

    Article  ADS  Google Scholar 

  14. A. Chowdhury, J. Schneider, J. Dore, et al., Appl. Phys. A, 107, 653 (2012).

    Article  ADS  Google Scholar 

  15. G. Kaur, M. A. Hossion, M. Kulasekaran, and B. M. Arora, “Synthesis of oriented and passivated polycrystalline silicon films on glass by hot-wire chemical-vapor deposition,” in: IEEE 40th Photovoltaic Specialist Conference, June 2014, p. 1326; https://doi.org/10.1109/PVSC.2014.6925162.

  16. S. Mondal and C. S. Solanki, Mater. Semiconductor Process., 59, 10 (2017).

    Article  Google Scholar 

  17. S. Tian, M. F. Morris, S. J. Morris, et al., IEEE Trans. Electron Devices, 45, 1226 (1998).

    Article  ADS  Google Scholar 

  18. M. A. Hossion and B. M. Arora, “Structural characterization of oriented crystalline silicon film grown on SiO2, sapphire, TiO2, and nickel substrate by hot-wire chemical-vapor deposition,” in: IEEE 40th Photovoltaic Specialist Conference, June 2014, p. 1292; https://doi.org/10.1109/PVSC.2014.6925153.

  19. J. Dore, D. Ong, S. Varlamov, et al., IEEE J. Photovoltaics, 4, 33 (2014).

    Article  Google Scholar 

  20. J. Müllerová, S. Jurecka, and P. Šutta, Solar Energy, 80, 667 (2006).

    Article  ADS  Google Scholar 

  21. A. Moussi, A. Djelloul, S. Meziani, et al., Mater. Res. Express, 7, 016426 (2020).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Abul Hossion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossion, M.A., Mondal, S. & Arora, B.M. Phosphorus Dopant Diffusion, Activation, and Annealing. Using Infrared Laser for Synthesis of n-Type Silicon Thin Film. J Russ Laser Res 41, 552–562 (2020). https://doi.org/10.1007/s10946-020-09910-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-020-09910-9

Keywords

Navigation