Skip to main content
Log in

Measurement of the Electron Temperature in a Metallic Copper Using Ultrafast Laser-Induced Breakdown Spectroscopy

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

In this paper, we provide the laser-induced breakdown spectroscopic (LIBS) analysis of copper under the action of the ultrafast picosecond Nd:YAG laser and the specifications calculated from the electron temperature of plasma generated by the fundamental (1064 nm), second (532 nm), third (355 nm), and fourth (266 nm) laser harmonics. In this work, a laser pulse energy of 60 mJ±5% with a duration of 170 ps, a beam diameter of ∼0.5±0.1 mm, and a laser intensity 1.79∙1011 W/cm2 ±8% for a single shot was applied. The electron temperature is measured using three spectral lines of neutral copper (Cu I) at 515.3, 521.8, and 522.0 nm, according to the Boltzmann plot model where the local thermodynamic equilibrium (LTE) conditions were assumed. The electron temperature values observed are 13422, 15152, 16605, and 17783K for laser wavelengths of 266, 355, 532, and 1064 nm, respectively. The experimental analysis reveals that the plasma electron temperature rises with the laser wavelength. Variations in the mass ablation rate, inverse Bremsstrahlung absorption, and photoionization with the laser wavelength variation allow us to explore the interaction dynamics. The results obtained allow for variation of the generated plasma electron temperature by guiding the picosecond pulse wavelengths; the later may allow for controlling plasma interactions, which can be applied in plasma spectroscopy of material science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Eddington, The Internal Constitution of the Stars, Cambridge University Press (1988).

  2. B. R. Adhikari and R. Khanal, Himal. Phys., 4, 60 (2013).

    Article  Google Scholar 

  3. U. Fantz, Plasma Sources Sci. Technol., 15, S137 (2006).

    Article  ADS  Google Scholar 

  4. H. Conrads and M. Schmidt, Plasma Sources Sci. Technol., 9, 441 (2000).

    Article  ADS  Google Scholar 

  5. T. L. Thiem, R. H. Salter, J. A. Gardner, et al., Appl. Spectrosc., 48, 58 (1994).

    Article  ADS  Google Scholar 

  6. D. A. Rusak, B. C. Castle, B. W. Smith, et al., “Fundamentals and applications of laser-induced breakdown spectroscopy,” in: Crit. Rev. Anal. Chem., Taylor & Francis Group (1997), Vol. 27.

  7. M. A. Gondal and M. A. Dastageer, “Elemental analysis of soils by laser-induced breakdown spectroscopy,” in: Springer Ser. Opt. Sci. (2014), Vol. 182, p. 293.

  8. A. Jarota, E. Pastorczak, W. Tawfik, et al., Phys. Chem. Chem. Phys., 21, 192 (2019).

    Article  Google Scholar 

  9. K. C. Phillips, H. H. Gandhi, E. Mazur, et al., Adv. Opt. Photon., 7, 684 (2015).

    Article  Google Scholar 

  10. S. Tan, J. Wu, Y. Zhang, et al., Energies, 11, 3163 (2018).

    Article  Google Scholar 

  11. G. Abdellatif and H. Imam, Spectrochim. Acta B: At. Spectrosc., 57, 1155 (2002).

    Article  ADS  Google Scholar 

  12. L. Fornarini, V. Spizzichino, F. Colao, et al., Anal. Bioanal. Chem., 385, 272 (2006).

    Article  Google Scholar 

  13. S. Messaoud Aberkane, A. Bendib, K. Yahiaoui, et al., Spectrochim. Acta B: At. Spectrosc., 113, 147 (2015).

    Article  ADS  Google Scholar 

  14. W. Xu, A. Chen, Q. Wang, et al., J. Anal. At. Spectrom., 34, 1018 (2019).

    Article  Google Scholar 

  15. W. A. Farooq, A. S. Al-Johani, M. S. Alsalhi, et al., J. Mol. Struct., 1201, 127152 (2020).

    Article  Google Scholar 

  16. W. A. Farooq, W. Tawfik, F. N. Al-Mutairi, et al., J. Korean Opt. Soc., 17, 548 (2013).

    Article  Google Scholar 

  17. R. Qindeel and W. Tawfik, Optoelectron. Adv. Mater. Rapid Commun., 8, 741 (2014).

    Google Scholar 

  18. A. Kramida, Y. Ralchenko, J. Reader, et al., Spectra Database (ver. 5.6.1) NIST At., National Institute of Standards and Technology, Gaithersburg, MD [http://physics.nist.gov/asd (2019)].

  19. A. B. Gojani, ISRN Spectrosc., 2012, 1 (2012).

  20. W. T. Y. Mohamed, Opt. Appl., 37, 5 (2007).

    Google Scholar 

  21. H. C. Liu, X. L. Mao, J. H. Yoo, et al., Spectrochim. Acta B: At. Spectrosc., 54, 1607 (1999).

    Article  ADS  Google Scholar 

  22. J. Hoffman, T. Moscicki, and Z. Szymanski, Appl. Phys. A: Mater. Sci. Process., 104, 815 (2011).

    Article  ADS  Google Scholar 

  23. A. E. Hussein, P. K. Diwakar, S. S. Harilal, et al., J. Appl. Phys., 113, 143305 (2013).

    Article  ADS  Google Scholar 

  24. A. Bogaerts and Z. Chen, Spectrochim. Acta B: At. Spectrosc., 60, 1280 (2005).

    Article  ADS  Google Scholar 

  25. L. M. Cabalin and J. J. Laserna, Spectrochim. Acta B: At. Spectrosc., 53, 723 (1998).

    Article  ADS  Google Scholar 

  26. J. J. Chang and B. E. Warner, Appl. Phys. Lett., 69, 473 (1996).

    Article  ADS  Google Scholar 

  27. X. L. Mao, O. V. Borisov, and R. E. Russo, Spectrochim. Acta B: At. Spectrosc., 53, 731 (1998).

    Article  ADS  Google Scholar 

  28. J. S. Cowpe, R. D. Moorehead, D. Moser, et al., Spectrochim. Acta B: At. Spectrosc., 66, 290 (2011).

    Article  ADS  Google Scholar 

  29. K. Afb, N’Mu, and M. Eluille Clark, NASA Technical Note, D-5311 (1969).

  30. X. L. Mao, A. C. Ciocan, O. V. Borisov, et al., Appl. Surf. Sci., 127–129, 262 (1998).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walid Tawfik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fikry, M., Tawfik, W. & Omar, M. Measurement of the Electron Temperature in a Metallic Copper Using Ultrafast Laser-Induced Breakdown Spectroscopy. J Russ Laser Res 41, 484–490 (2020). https://doi.org/10.1007/s10946-020-09901-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-020-09901-w

Keywords

Navigation