Skip to main content
Log in

Influence of Oceanic Turbulence on the Performance of Underwater Quantum Satellite Communication

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Oceanic turbulence is one of the important factors that affect the transmission of quantum optical signals in the seawater medium. However, up to now, none research on the influence of oceanic turbulence on the parameters of quantum communication channel is in progress. In order to fill such vacancies, we simulate in this paper the relationship of oceanic turbulence parameters to the optical wave structure function and the optical wave spatial coherence length to acquire the relationship between the oceanic turbulence intensity and oceanic turbulence parameters. Then, the relationships between the oceanic turbulence parameters and the channel entanglement, the bit-flip channel capacity, and the channel error rate are respectively established and simulated. The simulation results provide a reference for underwater quantum communication with the influence of oceanic turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Busch, T. Heinonen, and P. Lahti, Phys Rep., 452, 155 (2007).

    Article  ADS  Google Scholar 

  2. J. Chen, H. Su, and C. Wu, “Quantum no-cloning theorem certified by Bell’s theorem,” arXiv:1111.4618 (2011).

  3. N. Zhao, X. Wang, and N. Chen, “Effects of the atmospheric turbulence on the single photon transmission in quantum channel,” 2018 International Conference on Computing, Networking and Communications (ICNC) 432 (2018).

  4. D. Li, Q. Shen, W. Chen, et al., Opt. Commun., 452, 220 (2019).

    Article  ADS  Google Scholar 

  5. Z. Shi-Cheng, S. Peng, L. I. Wen-Dong, et al., J. Ocean Univ. China, 46, 131 (2016).

    Google Scholar 

  6. L. Ji, J. Gao, A. Yang, et al., Opt. Express, 25, 19795 (2017).

    Article  ADS  Google Scholar 

  7. M. Nie, J. Ren, G. Yang, et al., Acta Phys. Sinica, 64, 1 (2015).

    Google Scholar 

  8. M. Nie, P. Shang, G. Yang, et al., Acta Phys. Sinica, 63, 240303 (2014).

    Google Scholar 

  9. E. García, J. A. Lopez, E. Álvarez, et al., Proc. SPIE, 8842, 88420G (2013).

    Article  ADS  Google Scholar 

  10. V. V. Nikishov and V. I. Nikishov, Int. J. Fluid Mech. Res., 27, 82 (2000).

    Article  MathSciNet  Google Scholar 

  11. P. Diament and M. Teich, J. Opt. Soc. Am., 60, 1489 (1970).

    Article  ADS  Google Scholar 

  12. J. Perina, V. Perinova, M. Teich, et al., Phys. Rev. A, 7, 1732 (1973).

    Article  ADS  Google Scholar 

  13. X. Han, Y. Peng, Y. Zhang, et al., J. Eur. Opt. Soc. Rapid, 10, 15045 (2015).

    Article  Google Scholar 

  14. A. Karageorgis, P. Drakopoulos, S. Chaikalis, et al., Int. Soc. Opt. Photon., 10444, 104441B (2017).

  15. Z. Xu, X. Guo, L. Shen, et al., J. Geophys. Res. Oceans, 117, C7 (2012).

    Google Scholar 

  16. N. Min, P. Yue, Y. Guang, et al., Acta Phys. Sinica, 67, 140305 (2018).

    Google Scholar 

  17. C. Le, N. Min, Y. Guang, et al., J Quantum. Opt., 23, 339 (2017).

    Google Scholar 

  18. T. Wu, X. Ji, X. Li, et al., Acta Phys. Sinica, 67, 271 (2018).

    Google Scholar 

  19. Lu Lu, Xiaoling Ji, Xiaoqing Li, et al. Optik, 125, 7154 (2014).

    Article  ADS  Google Scholar 

  20. H. Pu and X. Ji, J. Opt., 18, 105704 (2016).

    Article  ADS  Google Scholar 

  21. H. Eyyubolu and Y. Baykal, Opt. Express, 12, 4659 (2004).

    Article  ADS  Google Scholar 

  22. E. Mohammed, U. Murat, B. Yahya, et al., J. Opt. Soc. Am. A, 34, 1969 (2017).

    Article  Google Scholar 

  23. T. Wu, X. Ji, X. Li, et al., Acta Phys. Sinica, 67, 224206 (2018).

    Google Scholar 

  24. L. Andrews and R. Phillips, Laser Beam Propagation through Random Media, 2nd ed., SPIE Press (2005).

  25. M. Nie, S. Tang, G. Yang, et al., Acta Phys. Sinica, 66, 070302 (2017).

    Google Scholar 

  26. M. Nie, P. Shang, G. Yang, et al., Acta Phys. Sinica, 63, 240303 (2014).

    Google Scholar 

  27. F. Yu-Qing, D. Qi, H. Cheng-Xi, et al., J. Optoelectron. Laser, 31, 199 (2020).

    Google Scholar 

  28. C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” arXiv:2003.06557 (2020).

  29. X. Zhang, X. Xu, and B. Liu, Acta Opt. Sinica, 40, 0727001 (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bangyu Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Liu, B. & Xu, X. Influence of Oceanic Turbulence on the Performance of Underwater Quantum Satellite Communication. J Russ Laser Res 41, 509–520 (2020). https://doi.org/10.1007/s10946-020-09904-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-020-09904-7

Keywords

Navigation