Skip to main content
Log in

Aluminium Toxicity and Its Tolerance in Plant: A Review

  • Review Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Aluminium (Al) toxicity is one of the major abiotic stress problems around the globe where acidic soil is present. Al shows a toxic effect between the soil pH 4.5 and 5.5. Root growth inhibition is the most prodigious symptom of Al toxicity in plants. Aluminium toxicity adversely affects the plant growth and development which ultimately reduces the yield. However, the extent of toxicity depends on the genotype of the plant, that is the plant is either the Al-sensitive or Al-tolerant type. Plants have several mechanisms to cope with the toxic effects of aluminium which include exclusion mechanism and internal tolerance mechanism. This review discusses the harmful impacts of aluminium on morphological, anatomical, physio-biochemical, and molecular aspects of the plant. This review also discusses the strategies to reduce the toxic effects of aluminium in plant and various aluminium-responsive genes which can be used in genetic manipulation for better crop development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achary VMM, Jena S, Panda KK, Panda BB (2008) Aluminium induced oxidative stress and DNA damage in root cells of Allium cepa L. Ecotoxicol Environ Saf 70:300–310

    CAS  PubMed  Google Scholar 

  • Akaya M, Takenaka C (2001) Effects of aluminum stress on photosynthesis of Quercus glauca Thumb. Plant Soil 237:137–146

    CAS  Google Scholar 

  • Akeson MA, Munns DN, Burau RG (1989) Adsorption of Al3+ to phosphotidylcholine vesicles. Biochem Biophys Acta 986(1):33–40

    CAS  PubMed  Google Scholar 

  • Alarcón-Poblete E, Inostroza-Blancheteau C, Alberdin M, Rengel Z, Reyes-Díaz M (2018) Molecular regulation of aluminum resistance and sulfur nutrition during root growth. Planta 247(1):27–39

    PubMed  Google Scholar 

  • Alarcón-Poblete E, Inostroza-Blancheteau C, Latsaguec M, Alberdi M, de Oliveira Silva FM, Nunes-Nesi A, Poblete-Grant P, Meriño-Gergichevich C, Reyes-Díaz M (2019) Gypsum application ameliorates morphological and photochemical damages provoked by Al toxicity in Vaccinium corymbosum L. cultivars. J Berry Res 9:665–685

    Google Scholar 

  • Ali B (2017) Salicylic acid induced antioxidant system enhances the tolerence to aluminium in mung bean (Vigna radiata L. Wilczek) plants. Ind J Plant Physiol. https://doi.org/10.1007/s40502-017-0292-1

    Article  Google Scholar 

  • Ali B, Hasan SA, Hayat S, Hayat Q, Yadav S, Fariduddin Q, Ahmad A (2008) A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). Environ Exp Bot 62:153–159

    CAS  Google Scholar 

  • Alvarez I, Sam O, Reynaldo I, Testillano P, del Carmen RM, Arias M (2012) Morphological and cellular changes in rice roots (Orayza sativa L.) caused by Al stress. Bot Stud 53:67–73

    CAS  Google Scholar 

  • Alvim MN, Ramos FT, Oliveira DC, Isaias RMS, Franca MGC (2012) Aluminium localization and toxicity symptoms related to root growth inhibition in rice (Oryza sativa L.) seedlings. J Biosci 37(6):1079–1088

    CAS  PubMed  Google Scholar 

  • Andrivon D (1995) Inhibition by aluminum of mycelia growth and of sporangial production and germination in Phytophthora infestans. Eur J Plant Pathol 101:527–533

    CAS  Google Scholar 

  • Arbelaez JD, Maron LG, Jobe TO, Piñeros MA, Famoso AN, Rebelo AR, Singh N, Ma Q, Fie Z, Kochian LV, McCouch SR (2017) ALUMINUM RESISTANCE TRANSCRIPTION FACTOR 1 (ART1) contributes to natural variation in aluminum resistance in diverse genetic backgrounds of rice (O sativa). Plant Direct 1:e00014

    PubMed  PubMed Central  Google Scholar 

  • Arenhart RA, Bai Y, de Oliveira LF, Bucker Neto L, Schunemann M, Maraschin Fdos S, Mariath J, Silverio A, Sachetto-Martins G, Margis R, Wang ZY, Margis-Pinheiro M (2014) New insights into aluminum tolerance in rice: the ASR5 protein binds the STAR1 promoter and other aluminum-responsive genes. Mol Plant 7:709–721. https://doi.org/10.1093/mp/sst160

    Article  CAS  PubMed  Google Scholar 

  • Arora P, Singh G, Tiwari A (2016) Exploring the role of Bacillus species in combating Aluminium toxicity in Zea mays by studying its effect on chlorophyll content. IOSR J Agric Vet Sci (IOSR-JAVS) 9:84–86

    Google Scholar 

  • Arp PA, Strucel I (1989) Water uptake by black spruce seedlings from rooting media (solution, sand, peat) treated with inorganic and oxalated aluminum. Water Air Soil Pollut 44:57–70

    CAS  Google Scholar 

  • Awasthi JP, Saha B, Regon P, Sahoo S, Chowra U, Pradhan A, Roy A, Panda SK (2017) Morphophysiological analysis of tolerance to aluminum toxicity in rice varieties of North East India. PLoS ONE 12(4):e0176357. https://doi.org/10.1371/journal.pone.0176357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basu U, Good AG, Taylor GJ (2001) Transgenic Brassica napus plants overexpressing aluminium-induced mitochondrial manganese superoxide dismutase cDNA are resistant to aluminium. Plant Cell Environ 24:1269–1278

    CAS  Google Scholar 

  • Bennet RJ, Breen CM, Fey MV (1985) Aluminium uptake sites in the primary root of Zea mays L. South African. J Plant Soil 2(1):1–7. https://doi.org/10.1080/02571862.1985.10634129

    Article  CAS  Google Scholar 

  • Bera S, De AK, Adak MA (2017) Modulation of glycine betaine accumulation with oxidative stress induced by aluminium toxicity in rice. Proc Natl Acad Sci India Sect B Biol Sci. https://doi.org/10.1007/s40011-017-0948-7

    Article  Google Scholar 

  • Bhalerao SA, Prabhu DV (2013) Aluminium toxicity in plants—a review. J Appl Chem 2:447–474

    CAS  Google Scholar 

  • Bhamburdekar SB, Chavan PD (2011) Effect of some stresses on free proline content during pigeonpea (Cajanas cajan) seed germination. J Stress Physiol Biochem 7:235–241

    Google Scholar 

  • Bhoomika K, Pyngrope S, Dubey RS (2014) Effect of aluminium on protein oxidation, non-protein thiols and protease activity in seedlings of rice cultivars differing in aluminium tolerance. J Plant Physiol 171(7):497–508

    CAS  PubMed  Google Scholar 

  • Bian M, Zhou M, Sun D, Li C (2013) Molecular approaches unravel the mechanism of acid soil tolerance in plants. Crop J 1:91–104

    Google Scholar 

  • Blair MW, López-Marín HD, Rao MI (2009) Identification of aluminium resistant Andean common bean (Phaseolus vulgaris L.) genotypes. Braz J Plant Physiol 21:291–300

    Google Scholar 

  • Bojórquez-Quintal E, Escalante-Magaña C, Echevarría-Machado I, Martínez-Estévez M (2017) Aluminum, a friend or foe of higher plants in acid soils. Front Plant Sci 8:1767. https://doi.org/10.3389/fpls.2017.01767

    Article  PubMed  PubMed Central  Google Scholar 

  • Boscolo PRS, Menossi M, Jorge RA (2003) Aluminum-induced oxidative stress in maize. Phytochemistry 62:181–189

    CAS  PubMed  Google Scholar 

  • Bose J, Babourina O, Rengel Z (2011) Role of magnesium in alleviation of aluminium toxicity in plants. J Exp Bot 62:2251–2264. https://doi.org/10.1093/jxb/erq456

    Article  CAS  PubMed  Google Scholar 

  • Brigham LA, Hawes MC, Miyasaka S (2001) Avoidance of aluminum toxicity: role of root border cells. Plant nutrition: food security and sustainability of agro-ecosystems through basic and applied research. Kluwer Academic, Boston, pp 452–545

    Google Scholar 

  • Butare L, Rao I, Lepoivre P, Polania J, Cajiao C, Cuasquer J, Beebe S (2011) New genetic sources of resistance in the genus Phaseolus to individual and combined stress factors of combined aluminum toxicity and progressive soil drying stresses. Euphytica 181:385–404

    CAS  Google Scholar 

  • Cartes P, McManus M, Wulff-Zottele C, Leung S, Gutiérrez-Moraga A, Mora MDL (2012) Differential superoxide dismutase expression in ryegrass cultivars in response to short term aluminium stress. Plant Soil 350:353–363. https://doi.org/10.1007/s11104-011-0919-3

    Article  CAS  Google Scholar 

  • Chandra J, Chauhan R, Korram J, Satnami ML, Keshavkant S (2020) Silica nanoparticle minimizes aluminium imposed injuries by impeding cytotoxic agents and over expressing protective genes in Cicer arietinum. Sci Hortic 260:108885

    CAS  Google Scholar 

  • Chang S, Jing-hao W, Gao-ling S, Lai-qing L, Jun-xia D, Jian-lin W, Qing-sheng C (2015) Different aluminum tolerance among Indica, Japonica and hybrid rice varieties. Rice Sci 22(3):123–131

    Google Scholar 

  • Chen JS, Lin YH (2010) Effect of aluminum on variations in the proteins in pineapple roots. Soil Sci Plant Nutr 56(3):438–444. https://doi.org/10.1111/j.1747-0765.2010.00479.x

    Article  CAS  Google Scholar 

  • Chen LS, Qi YP, Smith BR, Liu XH (2005) Aluminum-induced decrease in CO2 assimilation in citrus seedlings is unaccompanied by decreased activities of key enzymes involved in CO2 assimilation. Tree Physiol 25:317–324

    CAS  PubMed  Google Scholar 

  • Chen J, Wang WH, Wu FH, You CY, Liu TW, Dong XJ et al (2013) Hydrogen sulfide alleviates aluminum toxicity in barley seedlings. Plant Soil 362:301–318. https://doi.org/10.1007/s11104-012-1275-7

    Article  CAS  Google Scholar 

  • Chen J, Duan RX, Hu WJ, Zhang NN, Lin XY, Zhang JH, Zheng HL (2019a) Unravelling calcium-alleviated aluminium toxicity in Arabidopsis thaliana: insights into regulatory mechanisms using proteomics. J Proteom 199:15–30

    CAS  Google Scholar 

  • Chen Q, Wang B, Ding H, Zhang J, Li S (2019b) Review: the role of NADP-malic enzyme in plants under stress. Plant Sci 281:206–212

    CAS  PubMed  Google Scholar 

  • Chowra U, Yanase E, Koyama H, Panda SK (2016) Aluminium-induced excessive ROS causes cellular damage and metabolic shifts in black gram Vigna mungo (L.) Hepper. Protoplasma. https://doi.org/10.1007/s00709-016-0943-5

    Article  PubMed  Google Scholar 

  • Corrales I, Poschenrieder C, Barcelo J (1997) Influence of silicon pretreatment on aluminium toxicity in maize roots. Plant Soil 190:203–209

    CAS  Google Scholar 

  • Cuenca G, De Andrade Z, Meneses E (2001) The presence of aluminum in arbuscular mycorrhizas of Clusia multiflora exposed to increased acidity. Plant Soil 231:233–241

    CAS  Google Scholar 

  • Cumming JR, Ning J (2003) Arbuscular mycorrhizal fungi enhance aluminium resistance of broomsedge (Andropogon virginicus L.). J Exp Bot 54(386):1447–1459

    CAS  PubMed  Google Scholar 

  • da Cruz FJR, Lobato AKS, Costa RCL, Lopes MJS, Neves HKB, Neto CFO, Silva MHL, Filho BGS, Lima AL Jr, Okumura RS (2011) Aluminium negative impact on nitrate reductase activity, nitrogen compounds and morphological parameters in sorghum plants. Aust J Crop Sci 5:641–645

    Google Scholar 

  • Darkó É, Ambrus H, Stefanovits-bányai É, Fodor J, Bakos F, Barnabás B (2004) Aluminium toxicity, al tolerance and oxidative stress in an al-sensitive wheat genotype and in al-tolerant lines developed by in vitro microspore selection. Plant Sci 166(3):583–591

    Google Scholar 

  • de Freitas LB, Fernandes DM, Maia SCM, Mazziero BG (2017) Aluminum in mineral nutrition of upland rice plants. Agrária Revista Brasileira de Ciências Agrárias 12(1):26–34

    Google Scholar 

  • de Jesus DS, Martins FM, Neto ADA (2016) Structural changes in leaves and roots are anatomical markers of aluminum sensitivity in sunflower. Pesq Agropec Trop Goiânia 46(4):383–390

    Google Scholar 

  • de Macêdo CEC, Jan VVS, Kinet JM, Lutts S (2009) Effects of aluminium on root growth and apical root cells in rice (Oryza sativa L.) cultivars. Reliability of screening tests to detect Al resistance at the seedling stage. Acta Physiol Plant 31:1255–1262

    Google Scholar 

  • de Rosmaninho CLB, Dias AS, da Silva MF, de Vasconcelos A, Santos WO, Perez CEA, Vergutz L, Cardoso LG (2019) Performance of Crambe submitted to aluminum stress: an important oilseed plant. J Agric Sci 11(2):454

    Google Scholar 

  • de Sousa A, Saleh AM, Habeeb TH, Hassan YM, Zrieq R, Wadan MAM, Hozzein WN, Selim S, Matos M, AbdElgawad H (2019) Silicon dioxide nanoparticles ameliorate the phytotoxic hazards of aluminum in maize grown on acidic soil. Sci Total Environ 693:133636

    PubMed  Google Scholar 

  • de Souza IRP, Alves VMC, Parentoni SN, de Oliveira AC, Teixeira FF, MacAdam JW, Purcino AAC (2002) Change in root apical protein and peroxidase activity in response to aluminum in tolerant and sensitive maize inbred lines. Braz J Plant Physiol 14(3):219–224

    Google Scholar 

  • de Souza LC, Nogueira DCS, Machado LC, Costa TC, Martins TS, Mendes CAP, Pires NMC, Neto CFO, Conceição SS, Brito AEA (2016) Nitrogen compounds, proteins and amino acids in corn subjected to doses of aluminium. African J Agric Res 11:1519–1524

    Google Scholar 

  • Delgado M, Barra PJ, Reyes-Díaz M (2019) New aluminum hyperaccumulator species of the Proteaceae family from southern South America. Plant Soil. https://doi.org/10.1007/s11104-019-04289-2

    Article  Google Scholar 

  • Delhaize E, Ryan PR, Randall PJ (1993) Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum-stimulated excretion of malic acid from rootapices. Plant Physiol 103:695–702

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dengenhardt J, Larsen PB, Howell SH, Kochian LV (1998) Aluminum resistance in the arabidopsis mutant alr-104 Is caused by an aluminum-induced increase in rhizosphere pH. Plant Physiol 117(1):19–27

    Google Scholar 

  • Devasagayam TP, Tilok JC, Bolor KK, Sane KS, Ghaskadbi SS, Lele RD (2004) Free radicals and antioxidants in human health: current status and future prospects. J Assoc Phys India 52:794–804

    CAS  Google Scholar 

  • Devi SS, Saha B, Panda SK (2020) Differential Loss of ROS homeostasis and activation of anti oxidative defense response in tea cultivar due to aluminum toxicity in acidic soil. Curr Trends Biotechnol Pharm 14(1):33–43

    CAS  Google Scholar 

  • Díaz MR, Gergichevich CM, Alarcón E, Alberdi M (2011) Calcium sulfate ameliorates the effect of aluminum toxicity differentially in genotypes of highbush blueberry (Vaccinium corymbosum L.). J Soil Sci Plant Nutr 11(4):59–78

    Google Scholar 

  • Djuric M, Mladenovic J, Pavlovic R, Murtic N, Murtic S, Milic V, Šekularac G (2011) Aluminium content in leaf and root of oat (Avena sativa L.) grown on pseudogley soil. Afr J Biotechnol 10:17837–17840

    CAS  Google Scholar 

  • Dmitriev AA, Kudryavtseva AV, Bolsheva NL, Zyablitsin AV, Rozhmina TA, Kishlyan NV, Krasnov GS, Speranskaya AS, Krinitsina AA, Sadritdinova AF, Snezhkina AV, Fedorova MS, Yurkevich OY, Muravenko OV, Belenikin MS, Melnikova NV (2017) miR319, miR390, and miR393 are involved in aluminum response in flax (Linum usitatissimum L.). BioMed Res Int. https://doi.org/10.1155/2017/4975146

    Article  PubMed  PubMed Central  Google Scholar 

  • Doncheva S, Amenósn M, Poschenrieder C, Barcelo J (2005) Root cell patterning: a primary target for aluminium toxicity in maize. J Exp Bot 56:1213–1220

    CAS  PubMed  Google Scholar 

  • Dong Y, Wang H, Chang E, Zhao Z, Wang R, Xu R, Jiang J (2018) Alleviation of aluminum phytotoxicity by canola straw biochars varied with their cultivating soils through an investigation of wheat seedling root elongation. Chemosphere. https://doi.org/10.1016/j.chemosphere.2018.11.176

    Article  PubMed  PubMed Central  Google Scholar 

  • Duressa D, Soliman K, Taylor R, Senwo Z (2011) Proteomic analysis of soybean root sunder aluminum stress. Int J Plant Genom. https://doi.org/10.1155/2011/282531

    Article  Google Scholar 

  • Egerton-Warburton L (2015) Aluminum-tolerant pisolithus ectomycorrhizas confer increased growth, mineral nutrition, and metal tolerance to eucalyptus in acidic mine spoil. Appl Environ Soil Sci 2015:9

    Google Scholar 

  • El-Moneim DA, Contreras R, Silva-Navas J, GallegoF J, Figueiras AM, Benito C (2014) Pectin methylesterase gene and aluminum tolerance in Secale cereale. Environ Exp Bot 107:125–133

    CAS  Google Scholar 

  • Exley C (ed) (2001) Aluminum and Alzheimer’s disease: the science that describes the link. Elsevier, Amsterdam

    Google Scholar 

  • Ezaki B, Suzuki M, Motoda H, Kawamura M, Nakashima S, Matsumoto H (2004) Mechanism of gene expression of Arabidopsis glutathione S-transferase, AtGST1, and AtGST11in response to aluminum stress. Plant Physiol 134:1672–1682

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ezaki B, Jayaram K, Higashi A, Takahashi K (2013) A combination of five mechanisms confers a high tolerance for aluminium to a wild species of Poaceae, Andropogon virginicus. Environ Exp Bot 93:35–44

    CAS  Google Scholar 

  • Fonseca Junior EM, Cambraria J, Ribeiro C, Oliva MA, Oliveira JA, Da Matta FM (2014) The effects of aluminium on the photosynthetic apparatus of two rice cultivar. Expl Agric 50(3):343–352. https://doi.org/10.1017/S0014479713000471

    Article  Google Scholar 

  • Gao J, Yan S, Yu H, Zhan M, Guan K, Wang Y, Yang Z (2018) SbSTOP1 activates the transcription of a β-1,3-glucanase gene to reduce callose deposition under Al toxicity: a novel pathway for Al tolerance in plants. Biosci Biotechnol Biochem. https://doi.org/10.1080/09168451.2018.1540290

    Article  PubMed  Google Scholar 

  • Garzon T, Gunse B, Moreno AR, Tomos AD, Barceló J, Poschenrieder C (2011) Aluminium-induced alteration of ion homeostasis in root tip vacuoles of two maize varieties differing in Al tolerance. Plant Sci 180:709–715

    CAS  PubMed  Google Scholar 

  • Grover M, Ali Sk Z, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240. https://doi.org/10.1007/s11274-010-0572-7

    Article  Google Scholar 

  • Gunsé B, Poschenrieder C, Barceló J (2000) The role of ethylene metabolism in the short-term responses to aluminium by roots of two maize cultivars different in Al-resistance. Environ Exp Bot 43:73–81

    Google Scholar 

  • Gunsé B, Garzón T, Barceló J (2003) Study of aluminium toxicity by means of vital staining profiles in four cultivars of Phaseolus vulgaris L. J Plant Physiol 160:1447–1450

    PubMed  Google Scholar 

  • Guo P, Li Q, Qi Y-P, Yang L-T, Ye X, Chen H-H, Chen L-S (2017) Sulfur-mediated-alleviation of aluminum-toxicity in Citrus grandis seedlings. Int J Mol Sci 18:2570

    PubMed Central  Google Scholar 

  • Gupta N, Gaurav SS, Kumar A (2013) Molecular basis of aluminium toxicity in plants: a review. Am J Plant Sci 4:21–37

    Google Scholar 

  • Haruma T, Yamaji K, Ogawa K, Masuya H, Sekine Y, Kozai N (2019) Root-endophytic Chaetomium cupreum chemically enhances aluminium tolerance in Miscanthus sinensis via increasing the aluminium detoxicants, chlorogenic acid and oosporein. PLoS ONE 14(2):e0212644. https://doi.org/10.1371/journal.pone.0212644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He HY, He F, Gu MH, Li XF (2012) Nitric oxide improves aluminum tolerance by regulating hormonal equilibrium in the root apices of rye and wheat. Plant Sci 183:123–130

    CAS  PubMed  Google Scholar 

  • Heidarabadi MD, Ghanati F, Fujiwara T (2011) Interaction between boron and aluminum and their effects on phenolic metabolism of Linum usitatissimum L. roots. Plant Physiol Biochem 49:1377–1383. https://doi.org/10.1016/j.plaphy.2011.09.008

    Article  CAS  PubMed  Google Scholar 

  • Horst WJ, Wagner A, Marschner H (1982) Mucilage protects root meristems from aluminum injury. Z Pflanzenphysiol Bd 105:435–444

    CAS  Google Scholar 

  • Horst WJ, Schmohl N, Kollmeier M, Baluska F, Sivaguru M (1999) Does aluminum affect root growth of maize through interaction with the cell wallplasma membrane-cytoskeleton continuum? Plant Soil 215:163–174

    CAS  Google Scholar 

  • Hossain AKMZ, Hossain MA, Koyama H, Hara T (2004) Effects of aluminum and boron supply on growth of seedlings among 15 cultivars of wheat (Triticum aestivum L.) grown in Bangladesh. Soil Sci Plant Nutr 50:189–195

    CAS  Google Scholar 

  • Huang JW, Pellet DM, Papernik LA, Kochian LV (1996) Aluminum interactions with voltage-dependent calcium transport on plasma membrane vesicles isolated from roots of aluminum-sensitive and resistance wheat cultivars. Plant Physiol 110:561–569

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C, Yamaji N, Mitani N, Yano M, Nagamura Y, Ma JF (2009) A bacterial-type ABC transporter is involved in aluminum tolerance in rice. Plant Cell 21:655–667

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang SC, Lu GH, Tangi CY, Ji YJ, Tani GS, Hu DQ, Cheng J, Wang GH, Qi JL, Yang YH (2018a) Identification and comparative analysis of aluminum-induced microRNAs conferring plant tolerance to aluminum stress in soybean. Biol Plant 62:97–108

    CAS  Google Scholar 

  • Huang S, Gao J, You J, Liang Y, Guan K, Yan S, Zhan M, Yang Z (2018b) Identification of STOP1-like proteins associated with aluminum tolerance in sweet sorghum (Sorghum bicolor L.). Front Plant Sci 9:258. https://doi.org/10.3389/fpls.2018.00258

    Article  PubMed  PubMed Central  Google Scholar 

  • Huttová J, Tamás L, Mistrík I (2002) Aluminium induced acid phosphatase activity in roots of Al-sensitive and Al-tolerant barley varieties. ROSTLINNÁ VÝROBA 48(12):556–559

    Google Scholar 

  • Iuchi A, Kobayashi Y, Kitabayashi S, Kobayashi Y, Ikka T, Hirayama T, Shinozaki K, Kobayashi M (2007) Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. Proc Natl Acad Sci USA 104:9900–9905

    PubMed  Google Scholar 

  • Jaskowiak J, Tkaczyk O, Slota M, Kwasniewska J, Szarejko I (2018) Analysis of aluminum toxicity in Hordeum vulgare roots with an emphasis on DNA integrity and cell cycle. PLoS ONE 13(2):e0193156. https://doi.org/10.1371/journal.pone.0193156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaskowiak J, Kwasniewska J, Milewska-Hendel A, Kurczynska EU, Szurman-Zubrzycka M, Szarejko I (2019) Aluminum alters the histology and pectin cell wall composition of barley roots. Int J Mol Sci 20:3039

    CAS  PubMed Central  Google Scholar 

  • Jin Z, Pie Y (2015) Physiological implications of hydrogen sulfide in plants: pleasant exploration behind its unpleasant odour. Oxid Med Cell Longev. https://doi.org/10.1155/2015/397502

    Article  PubMed  PubMed Central  Google Scholar 

  • Keltgens WG, Dijikstra WJ (1999) The role of magnesium and calcium in alleviating aluminium toxicity in wheat plants, Plant-soil interactions at low pH. Springer, New York, pp 763–768

    Google Scholar 

  • Khan MSH, Tawaraya K, Sekimoto H, Koyama H, Kobayashi Y, Murayama T et al (2009) Relative abundance of delta5-sterols in plasma membrane lipids of root-tip cells correlates with aluminum tolerance of rice. Physiol Plant 135:73–83

    CAS  PubMed  Google Scholar 

  • Khoiriyah A, Putra ETS, Yudono P (2016) Proline activity and growth of oil palm affected by aluminium toxicity and silica as ameliorant. Ilmu Pertanian (Agric Sci) 1:007–012

    Google Scholar 

  • Kinraide TB (1998) Three mechanisms for the calcium alleviation of mineral toxicities. Plant Physiol 118:513–520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klug B, Specht A, Horst W (2011) Aluminium localization in root tips of the aluminiumaccumulating plant species buckwheat (Fagopyrum esculentum Moench). J Exp Bot 62(15):5453–5462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi Y, Ohyama Y, Kobayashi Y, Ito H, Iuchi S, Fujita M, Zhao CR, Tanveer T, Ganesan M, Kobayashi M, Koyama H (2014) STOP2 activates transcription of several genes for Al- and low pH-tolerance that are regulated by STOP1 in Arabidopsis. Mol Plant 7:311–322

    CAS  PubMed  Google Scholar 

  • Kochian LV (1995) Cellular mechanism of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plan tMol Biol 46:237–260

    CAS  Google Scholar 

  • Kochian LV, Piñeros MV, Liu J, Magalhaes JV (2015) Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. Annu Rev Plant Biol 66:23.1–23.28

    Google Scholar 

  • Konishi S (1992) Promotive effects of aluminium on tea plant growth. JARQ 26:26–33

    CAS  Google Scholar 

  • Kopittke PM, Gianoncelli A, Kourousias G, Green K, McKenna BA (2017) Alleviation of Al toxicity by Si is associated with the formation of Al–Si complexes in root tissues of sorghum. Front Plant Sci 8:2189

    PubMed  PubMed Central  Google Scholar 

  • Krasnov GS, Dmitriev AA, Zyablitsin AV, Rozhmina TA, Zhuchenko AA, Kezimana P, Snezhkina AV, Fedorova MS, Novakovskiy RO, Pushkova EN, Povkhova LV, Bolsheva NL, Kudryavtseva AV, Melnikova NV (2019) Aluminum responsive genes in flax (Linum usitatissimum L.). BioMed Res Int. https://doi.org/10.1155/2019/5023125

    Article  PubMed  PubMed Central  Google Scholar 

  • Krstic D, Djalovic I, Nikezic D, Bjelic D (2012) Aluminium in acid soils: chemistry, toxicity and impact on maize plants. Food Prod Approaches Chall Tasks. https://doi.org/10.5772/33077

    Article  Google Scholar 

  • Kumar A, Gupta S, Pandey A, Pattanayak A, Nagachan SV (2014) Studies on aluminium tolerance and morphological traits in rice lines from North Eastern India. Proc Natl Acad Sci India Sect B Biol Sci. https://doi.org/10.1007/s40011-014-0407-7

    Article  Google Scholar 

  • Larsen PB, Geisler MJB, Jones CA, Williams KM, Cancel JD (2005) AlS3 encods a pholem-localized ABC transporter-like protein that is required for aluminium tolerance in Arabidopsis. Plant J 41:353–363

    CAS  PubMed  Google Scholar 

  • Larsen PB, Cancel J, Rounds M, Ochoa V (2007) Arabidopsis ALS1 encodes a root tip and stele localized half type ABC transporter required for root growth in an aluminum toxic environment. Planta 225:1447–1458

    CAS  PubMed  Google Scholar 

  • Li C, Xu H, Xu J, Chun X, Ni D (2011) Effects of aluminium on ultrastructure and antioxidant activity in leaves of tea plant. Acta Physiol Plant 33:973–978

    CAS  Google Scholar 

  • Lima JC, Arenhart RA, Margis-Pinheiro M, Margis R (2011) Aluminum triggers broad changes in microRNA expression in rice roots. Genet Mol Res 10:2817–2832

    CAS  PubMed  Google Scholar 

  • Lima MDR, Barros UO Jr, Barbosa MAM, Segura FR, Silva FF, Batista BL, Lobato AKS (2016) Silicon mitigates oxidative stress and has positive effects in Eucalyptus platyphylla under aluminium toxicity. Plant Soil Environ 62(4):164–170

    CAS  Google Scholar 

  • Liu J, Magalhaes JV, Shaff J, Kochian LV (2009a) Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J 57:389–399. https://doi.org/10.1111/j.1365-313X.2008.03696.x

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Xu J, Lou H, Fan W, Yang J, Zheng S (2016) Characterization of VuMATE1 expression in response to iron nutrition and aluminum stress reveals adaptation of rice bean (Vigna umbellata) to acid soils through Cis regulation. Front Plant Sci 7:511

    PubMed  PubMed Central  Google Scholar 

  • Liu N, Song F, Zhu X, You J, Yang Z, Li X (2017) Salicylic acid alleviates aluminum toxicity in soybean roots through modulation of reactive oxygen species metabolism. Front Chem 5:96

    PubMed  PubMed Central  Google Scholar 

  • Liu Y, Tao J, Cao J, Zeng Y, Li X, Ma J, Huang Z, Jiang M, Sun L (2020) The beneficial effects of aluminum on the plant growth in Camellia japonica. J Soil Sci Plant Nutr. https://doi.org/10.1007//s42729-020-0251-9

    Article  Google Scholar 

  • Lloerens IR, Corrales S, Poschenrieder C, Barcelo J, Ortega RC (2015) Both Aluminium and ABA induce the expression of an ABC-Like Transporter Gene (FeALS3)in the Al-tolerant species Fagopyrum esculentum. Environ Exp Bot. https://doi.org/10.1016/j.envexpbot.2014.11.005

    Article  Google Scholar 

  • Lou HQ, Gong YL, Fan W, Xu JM, Liu Y, Cao MJ, Wang MH, Yang JL, Zheng SJ (2016) A formate dehydrogenase confers tolerance to aluminum and low pH. Plant Physiol 171:294–305

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lou HQ, Fan W, Jin FJ, Xu JM, Chen WW, Yang JL, Zheng SJ (2020) A NAC-type transcription factor confers aluminum resistance by regulating cell wall-associated receptor kinase 1 and cell wall pectin. Plant Cell Environ. https://doi.org/10.1002/pce.13676

    Article  PubMed  Google Scholar 

  • Ma JF, Hiradate S, Nomoto K, Iwashita T, Matsumoto H (1997) Internal detoxification mechanism of Al in hydrangea: identification of Al form in the leaves. Plant Physiol 113:1033–1039

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma JF, Hiradate S, Matsumoto H (1998) High aluminum resistance in buckwheat: II. Oxalic acid detoxifies aluminum internally. Plant Physiol 117:753–759

    CAS  PubMed Central  Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6(6):273–278

    CAS  PubMed  Google Scholar 

  • Macêdo CEC, Jan VVS (2008) Effect of aluminum stress on mineral nutrition in rice cultivars differing in aluminum sensitivity. Revista Brasileira de Engenharia Agrícola e Ambiental 12(4):363–369

    Google Scholar 

  • Madhan M, Mahesh K, Rao SSR (2014) Amelioration of aluminium toxicity on seed germination and early seedling growth of Pigeon Pea [Cajanus cajan (L.) Millsp.] by 28-Homobrassinolide. Int J Curr Microbiol Appl Sci 3(5):77–83

    Google Scholar 

  • Maejima E, Osaki M, Wagatsuma T, Watanabe T (2016) Contribution of constitutive characteristics of lipids and phenolics in roots of tree species in Myrtales to aluminum tolerance. Physiol Plant 160:11–20. https://doi.org/10.1111/ppl.12527

    Article  CAS  PubMed  Google Scholar 

  • Magalhaes JV, Liu J, Guimaraes CT, Lana UP, Alves VMC, Wang YH, Schaffert RE, Hoekenga OA, Pineros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39:1156–1161

    CAS  PubMed  Google Scholar 

  • Mantovanini JL, da Silva RG, de Silva JOL, dos Santose TMR, dos Santose DMM, Zingaretti SM (2019) Root system development and proline accumulation in sugarcane leaves under aluminum (Al3+) stress. AJCS 13(02):208–213

    CAS  Google Scholar 

  • Matsumoto H, Hirasawa E, Morimura S, Takahashi E (1976) Localization of aluminium in tea leaves. Plant Cell Physiol 17:627–631

    CAS  Google Scholar 

  • Md. Toufiq I (2014) Effect of elevated Al and pH on the growth and root morphology of Al-tolerant and Al-sensitive wheat seedlings in an acid soil. Span J Soil Sci. https://doi.org/10.3232/SJSS.2014.V4.N1.04

    Article  Google Scholar 

  • Meda AR, Furlani PR (2005) Tolerance to aluminum toxicity by tropical leguminous plants used as cover crops. Braz Arch Biol Technol 48(2):309–317

    CAS  Google Scholar 

  • Memon AR, Chino M, Yatazawa M (1982) Microdistribution of aluminium and manganese in tea leaf tissue as revealed ny X-ray micronalyzer. Commun Soil Sci Plant Anal 12(5):441–452

    Google Scholar 

  • Meriga B, Reddy BK, Rao KR, Reddy LA, Kishor PBK (2004) Aluminium-induced production of oxygen radicals, lipid peroxidation and DNA damage in seedlings of rice (Oryza sativa ). J Plant Physiol 161:63–68

    CAS  PubMed  Google Scholar 

  • Meyer JR, Shew HD, Harrison UJ (1994) Inhibition of germination and growth of Thielaviopsis basicola by aluminum. Phytopathology 84:598–602

    CAS  Google Scholar 

  • Miftahudin M, Nurlaela N, Juliarni J (2007) Uptake and distribution of aluminum in root apices of two rice varieties under aluminum stress. HAYATI J Biosci 14(3):110–114

    Google Scholar 

  • Min X, Jin X, Liu W, Wei X, Zhang Z, Ndayambaza B, Wang Y (2019) Transcriptome-wide characterization and functional analysis of MATE transporters in response to aluminum toxicity in Medicago sativa L. PeerJ 7:e6302. https://doi.org/10.7717/peerj.6302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra P, Dubey RS (2008) Effect of aluminium on metabolism of starch and sugars in growing rice seedlings. Acta Physiol Plant 30:265–275

    CAS  Google Scholar 

  • Miyasaka SC, Buta JG, Howell RK, Foy CD (1991) Mechanism of aluminum tolerance in snapbeans: root exudation of citric acid. Plant Physiol 96:737–743

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moustaka J, Ouzounidou G, Baycu G, Moustakas M (2016) Aluminum resistance in wheat involves maintenance of leaf Ca2+ and Mg2+ content, decreased lipid peroxidation and Al accumulation, and low photosystem II excitation pressure. Biometals. https://doi.org/10.1007/s10534-016-9938-0

    Article  PubMed  Google Scholar 

  • Muhammad N, Zvobgo G, Guo-ping Z (2018) A review: the beneficial effect of aluminum on plant growth in acid soil and the possible mechanisms. J Integr Agric 17:60345–60347. https://doi.org/10.1016/S2095-3119(18)61991-4

    Article  Google Scholar 

  • Nagata T, Hayatsu M, Kosuge N (1992) Identification of aluminium forms in tea leaves by 27Al NMR. Phytochemistry 31:1215–1218. https://doi.org/10.1016/00319422(92)80263-E

    Article  CAS  Google Scholar 

  • Nahar K, Hasanuzzaman M, Sujuki T, Fujita M (2016) Polyamines-induced aluminum tolerance in mung bean: a study on antioxidant defense and methylglyoxal detoxification systems. Ecotoxicology. https://doi.org/10.1007/s10646-016-1740-9

    Article  PubMed  Google Scholar 

  • Nasr N, Carapetian J, Heidari R, Rezaei SA, Abbaspour N, Darvishzadeh R, Ghezelbash F (2011) The effect of aluminium on enzyme activities in two wheat cultivars. Afr J Biotech 10(17):3354–3364

    CAS  Google Scholar 

  • Navascués J, Pérez-Rontomé C, Sánchez DH, Staudinger C, Wienkoop S, Rellán-Álvarez R, Becana M (2011) Oxidative stress is a consequence, not a cause, of aluminum toxicity in the forage legum Lotus corniculatus. New Phytol 193:625–636. https://doi.org/10.1111/j.1469-8137.2011.03978.x

    Article  CAS  PubMed  Google Scholar 

  • Negishi T, Oshima K, Hattori M, Kanai M, Mano S, Nishimura M, Yoshida K (2012) Tonoplast- and plasma membrane-localized aquaporin-family transporters in blue hydrangea sepals of aluminum hyperaccumulating plant. PLoS ONE 7(8):e43189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nhan PP, Hai NT (2013) Amelioration of aluminum toxicity on OM4900 rice seedlings by sodium silicate. Afr J Plant Sci 7(6):208–212. https://doi.org/10.5897/AJPS11.306

    Article  CAS  Google Scholar 

  • Okhi K (1987) Aluminium stress on sorghum growth and nutrient relationships. Plant Soil 98:195–202

    Google Scholar 

  • Oluyedun OA, vanLoon GW (1994) Factors affecting uptake of aluminum by the fungus Neocosmospora vasinfecta. In: 15th world congress of soil science, Acapulco, Mexico vol 4, p 45

  • Palani K, Balasubramanian K, Kalaivani RA (2018) Study on aluminium contamination in Mettur soil and its subsequent uptake by medicinal plants. Orient J Chem 34(6):3129–3133

    CAS  Google Scholar 

  • Panda SK, Matsumoto H (2007) Molecular physiology of aluminum toxicity and tolerance in plants. Bot Rev 73:326–347

    Google Scholar 

  • Panda SK, Singha LB, Khan MH (2003) Does aluminium phytotoxicity induce oxidative stress in greengram (Vigna radiata )? Bulg J Plant Physiol 29(1–2):77–86

    Google Scholar 

  • Pandey P, Srivastava RK, Dubey RS (2013) Salicylic acid alleviates aluminum toxicity in rice seedlings better than magnesium and calcium by reducing aluminum uptake, suppressing oxidative damage and increasing antioxidative defense. Ecotoxicology 22(4):656–670

    CAS  PubMed  Google Scholar 

  • Papernik LA, Kochian LV (1997) Possible involvement of aluminum-induced electrical signals in aluminum tolerance in wheat. Plant Physiol 115:657–667

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pellet DM, Papernik LA, Kochian LV (1996) Multiple aluminum-resistance mechanisms in wheat (roles of root apical phosphate and malate exudation). Plant Physiol 112(2):591–597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pietraszewska TM (2001) Effect of aluminium on plant growth and metabolism. Acta Biochim Pol 48:673–686

    Google Scholar 

  • Pirzadah TB, Malik B, Tahir I, Rehman RU, Hakeem KR, Alharby HF (2019) Aluminium stress modulates the osmolytes and enzyme defense system in Fagopyrum species. Plant Physiol Biochem 144:178–186

    CAS  PubMed  Google Scholar 

  • Pontigo S, Godoy K, Jiménez H, Gutiérrez-Moraga A, Mora ML, Cartes P (2017) Silicon-mediated alleviation of aluminum toxicity by modulation of Al/Si uptake and antioxidant performance in ryegrass plants. Front. Plant Sci 8:642

    PubMed  PubMed Central  Google Scholar 

  • Qian L, Chen B, Chen M (2016) Novel alleviation mechanisms of aluminum phytotoxicity via released biosilicon from rice straw-derived biochars. Sci Rep 6:29346. https://doi.org/10.1038/srep29346

    Article  PubMed  PubMed Central  Google Scholar 

  • Qian L, Li Q, Sun J, Feng Y (2018) Effect of Bio char on plant growth and aluminium form of soil under aluminium stress. IOP Conf Series Earth Environ Sci. https://doi.org/10.1088/1755-1315/108/4/042123

    Article  Google Scholar 

  • Qiu W, Wang N, Dai J, Wang T, Kochian LV, Liu J, Zuo Y (2019) AhFRDL1-mediated citrate secretion contributes to adaptation to iron deficiency and aluminum stress in peanuts. J Exp Bot 70(10):2873–2886

    CAS  PubMed  Google Scholar 

  • Ramesh SA, Tyerman SD, Xu B, Bose J, Kaur S, Conn V, Domingos P, Ullah S, Wege S, Shabal S, Feijo JA, Ryan PR, Gilliham M (2015) GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters. Nat Commun. https://doi.org/10.1038/ncomms8879

    Article  PubMed  PubMed Central  Google Scholar 

  • R’bia O, Horchani F, Smida I, Mejri M, Aschi-Smiti S (2011) Aluminium phytotoxicity and plant acclimation to acidic soils. Int J Agric Res 6(3):194–208

    Google Scholar 

  • Rangel AF, Rao IM, Horst WJ (2009) Intracellular distribution and binding state of aluminium in root apices of two common bean (Phaseolus vulgaris) genotypes in relation to Al toxicity. Physiol Plant 135:162–173

    CAS  PubMed  Google Scholar 

  • Reid RJ, Tester MA, Smith FA (1995) Calcium/aluminium interactions in the cell wall and plasma membrane of Chara. Planta 195:362–368

    CAS  Google Scholar 

  • Riaz M, Yan L, Wu X, Hussain S, Aziz O, Wang Y, Imran M, Jiang C (2018) Boron alleviates aluminium toxicity in trifoliate orange by regulating antioxidant defense system and reducing root cell injury. J Environ Manag 208:149e158

    Google Scholar 

  • Ribeiro MAQ, de Almeida AAF, Mielke MS, Gomes FP, Pires MV, Baligar VC (2013) Aluminium effects on growth, photosynthesis, and mineral nutrition of cacao genotypes. J Plant Nutr 36:1161–1179

    CAS  Google Scholar 

  • Ribeiro AP, de Souza WR, Martins PK, Vinecky F, Duarte KE, Basso MF, da Cunha BADB, Campanha RB, de Oliveira PA, Centeno DC, Cançado GMA, de Magalhães JV, de Sousa CAF, Andrade AC, Kobayashi AK, Molinari HBC (2017) Overexpressionof BdMATE gene improves aluminum tolerance in Setaria viridis. Front Plant Sci 8:865. https://doi.org/10.3389/fpls.2017.00865

    Article  PubMed  PubMed Central  Google Scholar 

  • Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62(10):3321–3338. https://doi.org/10.1093/jxb/err031

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues M, Ganança JFT, da Silva EM, dos Santos TMM, Slaski JJ, Zimny J, Pinheiro de Carvalho MAA (2019) Evidences of organic acids exudation in aluminium stress responses of two Madeiran wheat (Triticum aestivum L.) landraces. Genet Resour Crop Evol. https://doi.org/10.1007/s10722-019-00754-0

    Article  Google Scholar 

  • Roshani M, Abbaspour H, Saeidi-sar S (2014) Effect of aluminium stress on germination and mineral nutrition of kidney bean cultivars with different sensitivity to aluminium. Biosci Biotechnol Res Asia 11(2):545–553

    Google Scholar 

  • Rosseland BO, Eldhuset TD, Staurnes M (1990) Environmental effects of aluminium. Environ Geochem Health 12(1–2):17–27

    CAS  PubMed  Google Scholar 

  • Rouphael Y, Cardarelli M, Colla G (2015) Role of arbuscular mycorrhizal fungi in alleviating theadverse effects of acidity and aluminium toxicity in zucchini squash. Sci Hortic 188:97–105

    CAS  Google Scholar 

  • Roy B, Bhadra S (2014) Effects of toxic levels of aluminium on seedling parameter of rice under hydroponic culture. Rice Sci 21(4):217–223

    Google Scholar 

  • Rufyikiri G, Nootens D, Dufey JE, Delvaux B (2000) Effect of aluminium on bananas (Musa spp.) cultivated in acid solutions. I. Plant growth and chemical composition. Fruits 55:367–379

    CAS  Google Scholar 

  • Ruiz JM, Rivero RM, Romero L (2006) Boron increases synthesis of glutathione in sunflower plants subjected to aluminum stress. Plant Soil 279:25–30

    CAS  Google Scholar 

  • Ryan PR, Ditomaso JM, Kochian LV (1993) Aluminium toxicity in roots - an investigation of spatial sensitivity and the role of the cap. J Exp Bot 44:437–446

    CAS  Google Scholar 

  • Ryan PR, Raman H, Gupta S, Horst WJ, Delhaize E (2009) A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiol 149:340–351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Samad R (2017) Effects of aluminium toxicity on ion transport in Oryza sativa L. and Cicer aeriatinum L. in relation to biochemical and anatomical changes. Thesis, Plant Physiology, Biochemistry and Plant Nutrition Laboratory, Department of Botany, University of Dhaka

  • Samad R, Rashid P, Kormokar JL (2017) Effects of aluminium toxicity on germination of seeds and its correlation with K+, Cl- and Al3+ accumulation in radicle and plumule of Oryza sativa L. and Cicer aeriatinum L. Bangladesh. J Bot 46(3):979–986

    Google Scholar 

  • Santos E, Pinto-Carnide O, Figueiras AM, Benito C, Matos M (2019) Biochemical, physiological and genetic analysis of aluminum tolerance of different rye species. Environ Exp Bot 162:87–94

    CAS  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki E, Katsuhara M, Ju A, Ryan P, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminium-activated malate transporter. Plant J 37:645–653

    CAS  PubMed  Google Scholar 

  • Schwarzerová K, Zelenková S, Nick P, Opatrný Z (2002) Aluminum-induced rapid changes in the microtubular cytoskeleton of tobacco cell lines. Plant Cell Physiol 43(2):207–216

    PubMed  Google Scholar 

  • Sghaier DB, Pedro S, Diniz MS, Duarte B, Caçador I, Sleimi N (2016) Tissue localization and distribution of As and Al in the Halophyte Tamarix gallica under controlled conditions. Front Mar Sci 3:274. https://doi.org/10.3389/fmars.2016.00274

    Article  Google Scholar 

  • Shahnawaz MD, Sanadhya D (2017) Aluminium induced oxidative stress and antioxidants system in two barley varieties and its alleviation through ascorbic acid and salicylic acid seed priming approach. Int J Life Sci Pharm Res 7:26–37

    Google Scholar 

  • Silambarasan S, Logeswari P, Cornejo P, Kannan VR (2019a) Role of plant growth promoting rhizobacterial consortium in improving the Vigna radiata growth and alleviation of aluminum and drought stresses. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-019-05939-9

    Article  Google Scholar 

  • Silambarasan S, Logeswari P, Cornejo P, Abraham J (2019b) Simultaneous mitigation of aluminum, salinity and drought stress in Lactuca sativa growth via formulated plant growth promoting Rhodotorula mucilaginosa CAM4. Ecotoxicol Environ Saf 180:63–72

    CAS  PubMed  Google Scholar 

  • Silva S (2012) Aluminium toxicity targets in plants. J Bot 2012:535–545

    Google Scholar 

  • Silva IR, Smyth TJ, Israel DW, Raper CD, Rufty TW (2001) Magnesium ameliorates aluminium rhizotoxicity in soybean by increasing citric acid production and exudation by roots. Plant cell physiol 42(5):546–554

    CAS  PubMed  Google Scholar 

  • Silva JOC, Paiva EAS, Modolo LV, Nascentes CC, Franca MGC (2013) Removal of root apices enables study of direct toxic effects of aluminum on rice (Oryza sativa L.) leaf cells. Environ Exp Bot. https://doi.org/10.1016/j.envexpbot.2013.08.001

    Article  Google Scholar 

  • Silva RG, Mateus-Rosa T, de Castro FS, Kottapalli P, Kottapalli KR, Zingaretti SM (2019) Microtranscriptome of contrasting sugarcane cultivars in response to aluminum stress. BioRxiv. https://doi.org/10.1101/645267

    Article  Google Scholar 

  • Sivaguru M, Fujiwara T, Samaj J, Baluska F, Yang Z, Osawa H, Maeda T, Mori T, Volkmann D, Matsumoto H (2000) Aluminum-induced 1,3-β-D-glucan inhibits cell-to-cell trafficking of molecules through plasmodesmata: a new mechanism of Al toxicity in plants. Plant Physiol 124:991–1005

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnov OE, Kosyan AM, Kosyk OI, Taran NY (2015) Response of phenolic metabolism induced by aluminium toxicity in fagopyrum esculentum moench. Plants Ukr Biochem J 87(6):135

    Google Scholar 

  • Snowden KC, Richards KD, Gardner RC (1995) Aluminum-induced genes. Introduction of toxic metals, low calcium, and wounding and pattern of expression in root tips. Plant Physiol 107:341–348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song H, Xu X, Wang H, Wang H, Toa Y (2010) Exogenous γ -aminobutyric acid alleviates oxidative damage caused by aluminium and proton stresses on barley seedlings. J Sci Food Agric 90:1410–1416. https://doi.org/10.1002/jsfa.3951

    Article  CAS  PubMed  Google Scholar 

  • Stass A, Kotur Z, Horst WJ (2007) Effect of boron on the expression of aluminum toxicity in Phaseolus vulgaris. Physiol Plant 131:283–290. https://doi.org/10.1111/j.1399-3054.2007.00957.x

    Article  CAS  PubMed  Google Scholar 

  • Steiner F, Zoz T, Pinto Junior AS, Castagnar DD, Dranski JAL (2012) Effects of aluminum on plant growth and nutrient uptake in young physic nut plants, emina: Ciências Agrárias. Londrina 33(5):1779–1788

    CAS  Google Scholar 

  • Sun L, Liang C, Chen Z, Liu P, Tian J, Liu G, Liao H (2014) Superior aluminium(Al) tolerance of stylosanthes is achieved mainly by malate synthesis through an Al enhanced malic enzyme, SgME1. NewPhytol 202:209–219

    CAS  Google Scholar 

  • Surapu V, Ediga A, Meriga B (2014) Salicylic acid alleviates aluminum toxicity in tomato seedlings (Lycopersicum esculentum Mill.) through activation of antioxidant defense system and proline biosynthesis. Adv Biosci Biotechnol 5:777–789. https://doi.org/10.4236/abb.2014.59091

    Article  Google Scholar 

  • Takeda K, Kariuda M, Itoi H (1985) Blueing of sepal colour of Hydrangea macrophylla. Phytochemistry 24:2251–2254

    CAS  Google Scholar 

  • Tamás L, Huttová J, Mistrík I (2002) Effect of aluminium on peroxidase activity in roots of Al- sensitive and Al- resistant barley cultivar. Rostalina Vyroba 48(2):76–79

    Google Scholar 

  • Tamás L, Huttová J, Mistrík I, Šimonovičová M, Široká M (2006) Aluminium-induced drought and oxidative stress in barley roots. J Plant Physiol 163:781–784

    PubMed  Google Scholar 

  • Theriappan P, Gupta AK, Dhasarathan P (2011) Accumulation of proline under salinity and heavy metal stress in cauliflower seedlings. J Appl Sci Environ Manag 15:251–325

    CAS  Google Scholar 

  • Tistama R, Widyastuti U, Sopandie D, Yokota A, Akashi K, Suharsono K (2012) Physiological and biochemical responses to aluminum stress in the root of a biodiesel plant Jatropha curcas L. HAYATI J Biosci 19(1):37–43

    Google Scholar 

  • Ulloa-Inostroza EM, Alberdi M, Meriño-Gergichevich C, Reyes-Díaz M (2016) Low doses of exogenous methyl jasmonate applied simultaneously with toxic aluminum improve the antioxidant performance of Vaccinium corymbosum. Plant Soil. https://doi.org/10.1007/s11104-016-2985-z

    Article  Google Scholar 

  • Vasconcelos CV, Costa AC, Müller C, Castoldi G, Costa AM, KdeP B, Rodrigues AA, da Silva AA (2020) Potential of calcium nitrate to mitigate the aluminum toxicity in Phaseolus vulgaris: effects on morphoanatomical traits, mineral nutrition and photosynthesis. Ecotoxicology. https://doi.org/10.1007/s10646-020-02168-6

    Article  PubMed  Google Scholar 

  • Vitorello VA, Capaldi FR, Stefanuto VA (2005) Recent advances in aluminium toxicity and resistance in higher plants. Braz J Plant Physiol 17(1):129–143

    CAS  Google Scholar 

  • Wang Q, Nian F, Zhao L, Li F, Yang H, Yang Y (2013) Exogenous indole-3-acetic acid could reduce the accumulation of aluminum in root apex of wheat (Triticum aestivum L.) under Al stress. J Soil Plant Nutr 13:534–543

    Google Scholar 

  • Wang W, Zhao XQ, Chen RF, Dong XY, Lan P, Ma JF et al (2015) Altered cell wall properties are responsible for ammonium-reduced aluminium accumulation in rice roots. Plant Cell Environ 38:1382–1390. https://doi.org/10.1111/pce.12490

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Ren X, Huang B, Wang G, Zhou P, An Y (2016a) Aluminium induced reduction of plant growth in alfalfa (Medicago sativa) is mediated by interrupting auxin transport and accumulation in roots. Sci Rep 6:30079. https://doi.org/10.1038/srep30079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Yu W, Zhang J, Rengel Z, Xu J, Han Q, Chen L, Li K, Yu Y, Chen Q (2016b) Aluminium -induced citrate exudation through upregulation of GmMATE and activation of the plasma membrane H+-ATPase in soybean roots. Ann Bot 118(5):933–940

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Li R, Li D, Jia X, Zhou D, Li J, Lyi SM, Hou S, Huang Y, Kochian LV, Liu J (2017) NIP1;2 is a plasma membrane-localized transporter mediating aluminum uptake, translocation, and tolerance in Arabidopsis. PNAS 114(19):5047–5052

    CAS  PubMed  Google Scholar 

  • Watanabe T, Osaki M (2001) Influence of aluminum and phosphorus on growth and xylem sap composition in Melastoma malabathricum L. Plant Soil 237:63–70

    CAS  Google Scholar 

  • Watanabe T, Jansen S, Osaki M (2005) The beneficial effect of aluminium and the role of citrate in Al accumulation in Melastoma malabathricum. New Phytol 165:773–780

    CAS  PubMed  Google Scholar 

  • Watt DA (2003) Aluminium—responsive genes in sugarcane: identification and analysis of expression under oxidative stress. J Exp Bot 54(385):1163–1174

    CAS  PubMed  Google Scholar 

  • Wojcik P (2003) Impact of boron on biomass production and nutrition of aluminum-stressed apple rootstocks. J Plant Nutr 26:2439–2451

    CAS  Google Scholar 

  • Wu Y, Yang Z, How J, Xu H, Chen L, Li K (2017) Overexpression of a peroxidase gene (AtPrx64) of Arabidopsis thaliana in tobacco improves plant’s tolerance to aluminum stress. Plant Mol Biol. https://doi.org/10.1007/s11103-017-0644-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu L, Yu L, Shen Q, Huang L, Wu D, Zhang G (2018) Identification of microRNAs in response to aluminum stress in the roots of Tibetan wild barley and cultivated barley. BMC Genom 19:560

    Google Scholar 

  • Xia JX, Yamaji N, Kasai T, Ma JF (2010) Plasma membrane-localized transporter for aluminum in rice. Proc Natl Acad Sci USA 107:18381–18385

    CAS  PubMed  Google Scholar 

  • Yamaji N, Huang CF, Nagao S, Yano M, Sato Y, Nagamura Y, Ma JF (2009) A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice. Plant Cell 21:3339–3349

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang JL, Li YY, Zhang YJ, Zhang SS, Wu YR, Wu P et al (2008) Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex. Plant Physiol 146:602–611

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang ZB, You JF, Xu MY, Yang ZM (2009) Interaction between aluminum toxicity and manganese toxicity in soybean (Glycine max). Plant Soil 319:277–289

    CAS  Google Scholar 

  • Yang M, Tan L, Xu Y, Zhao Y, Cheng F, Ye S, Jiang W (2015) Effect of low pH and aluminum toxicity on the photosynthetic characteristics of different fast-growing Eucalyptus vegetatively propagated clones. PLoS ONE 10(6):e0130963. https://doi.org/10.1371/journal.pone.0130963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Liu Y, Huang C-F, de Silva J, Zhao F-J (2016) Aluminium alleviates fluoride toxicity in tea (Camellia sinensis). Plant Soil 402:179–190. https://doi.org/10.1007/s11104-015-2787-8

    Article  CAS  Google Scholar 

  • Yano K, Takaki M (2005) Mycorrhizal alleviation of acid soil stress in the sweet potato (Ipomoea batatas). Soil Biol Biochem 37:1569–1572

    CAS  Google Scholar 

  • Yokosho K, Yamaji N, Ma JF (2010) Isolation and characterization of two MATE genes in rye. Funct Plant Biol 37:296–303

    CAS  Google Scholar 

  • Yokosho K, Yamaji N, Ma JF (2011) An Al-inducible MATE gene is involved in external detoxification of Al in rice. Plant J 68:1061–1069

    CAS  PubMed  Google Scholar 

  • Yu M, Shen RF, Xiao HD, Xu MM, Wang WH, Zeng Q, Bian J (2009) Boron alleviates aluminum toxicity in pea (Pisum sativum). Plant Soil 314:87–98

    CAS  Google Scholar 

  • Zerrouk IZ, Rahmoune B, Khelifi L, Mounir K, Baluska F, Ludwig-Muller J (2019) Algerian Sahara PGPR confers maize root tolerance to salt and aluminum toxicity via ACC deaminase and IAA. Acta Physiol Plant 41:91. https://doi.org/10.1007/s11738-019-2881-2

    Article  CAS  Google Scholar 

  • Zhang XB, Liu P, Yang YS, Xu GD (2007a) Effect of Al in soil on photosynthesis and related morphological and physiological characteristics of two soybean genotypes. Bot Stud 48:435–444

    CAS  Google Scholar 

  • Zhang J, He Z, Tian H, Zhu G (2007b) Peng X (2007) Identification of aluminium-responsive genes in rice cultivars with different aluminium sensitivities. J Exp Bot 58(8):2269–2278. https://doi.org/10.1093/jxb/erm110

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Zhang S, Meng Q, Zou J, Ziang W, Liu D (2009) Effects of aluminium on nucleoli in root tip cells, root growth and the antioxidant defense system in Vicia faba L. Acta Biologica Cracovinsea Series Botanica 51(2):99–106

    Google Scholar 

  • Zhang H, Tan ZQ, Hu LY, Wang SH, Luo JP, Jones RL (2010) Hydrogen sulfide alleviates aluminum toxicity in germinating wheat seedlings. J Integr Plant Biol 52:556–567. https://doi.org/10.1111/j.1744-7909.2010.00946.x

    Article  PubMed  Google Scholar 

  • Zhang H, Jiang Z, Qin R, Zhang H, Zou J, Jiang W, Liu D (2014) Accumulation and cellular toxicity of aluminium in seedling of Pinus massoniana. BMC Plant Biol 14:264

    PubMed  PubMed Central  Google Scholar 

  • Zhang JR, Zeng BJ, Mao YW, Kon XY, Wang XX, Yang Y, Zhang J, Xu J, Rengel Z, Chen Q (2017) Melatonin alleviates aluminium toxicity through modulating antioxidative enzymes and enhancing organic acid anion exudation in soybean. Funct Plant Biol 44:961–968

    CAS  PubMed  Google Scholar 

  • Zhang J, Li D, Wei J, Ma W, Kong X, Rengel Z, Chen Q (2018) Melatonin alleviates aluminum-induced root growth inhibition by interfering with nitric oxideproduction in Arabidopsis. Environ Exp Bot. https://doi.org/10.1016/j.envexpbot.2018.08.014

    Article  Google Scholar 

  • Zhang X, Long Y, Huang J, Xia J (2019) Molecular mechanisms for coping with Al toxicity in plants. Int J Mol Sci 20:1551

    PubMed Central  Google Scholar 

  • Zhao Z, Gao X, Ke Y, Chang M, Xie L, Li X, Gu M, Liu J, Tang X (2019) A unique aluminum resistance mechanism conferred by aluminum and salicylic-acid-activated root effluxof benzoxazinoids in maize. Plant Soil. https://doi.org/10.1007/s11104-019-03971-9

    Article  Google Scholar 

  • Zheng SJ (2010) Crop production on acidic soils: overcoming aluminium toxicity and phosphorus deficiency. Ann Bot 106:183–184

    PubMed  PubMed Central  Google Scholar 

  • Zhou S, Sauve R, Thannhauser TW (2009) Proteome changes induced by aluminium stress in tomato roots. J Exp Bot 60(6):1849–1857

    CAS  PubMed  Google Scholar 

  • Zhou X-X, Yang L-T, Qi Y-P, Guo P, Chen L-S (2015) Mechanismson boron induced alleviation of aluminum-toxicityin citrus grandis seedlings at a transcriptional level revealed by cDNA-AFLP analysis. PLoS ONE 10(3):e0115485. https://doi.org/10.1371/journal.pone.01155485

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Yang Z, Xu Y, Sun H, Sun Z, Lin B, Sun W, You J (2018) Soybean NADP-malic enzyme functions in malate and citrate metabolism and contributes to their efflux under Al stress. Front Plant Sci 8:2246. https://doi.org/10.3389/fpls.2017.02246

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu CQ, Zhang JH, Sun LM, Zhu LF, Abliz B, Hu WJ, Zhong C, Bai ZG, Sajid H, Cao XC, Jin QY (2018) Hydrogen sulfide alleviates aluminum toxicity via decreasing apoplast and symplast Al contents in rice. Front Plant Sci 9:294

    PubMed  PubMed Central  Google Scholar 

  • Zhu CQ, Cao XC, Bai ZG, Zhu LF, Hu WJ, Hu AY, Abliz B, Zhong C, Liang QD, Huang J, Zhang JH, Jin QY (2019) Putrescine alleviates aluminum toxicity in rice (Oryza sativa) by reducing cell wall Al contents in an ethylene-dependent manner. Physiol Plant. https://doi.org/10.1111/ppl.12961

    Article  PubMed  PubMed Central  Google Scholar 

  • Ziaei N, Rezaiatmand Z, Ranjbar M (2014) Study of aluminium toxicity on photosynthetic pigment, soluble sugars and proline contents in two sunflower varieties. Res Crop Physiol 9:105–113

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hrishikesh Upadhyaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, R., Upadhyaya, H. Aluminium Toxicity and Its Tolerance in Plant: A Review. J. Plant Biol. 64, 101–121 (2021). https://doi.org/10.1007/s12374-020-09280-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-020-09280-4

Keywords

Navigation