Skip to main content
Log in

Facial synthesis of Al@MnO2 with enhanced microwave absorption and low infrared emissivity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Al@MnO2 composites were synthesized by flake aluminum powder and potassium permanganate via a facile one-step method. As a multi-band stealth material, the composites have both enhanced microwave absorbing property and low infrared emissivity. We can use XRD, XPS, SEM, and TEM to detect structure and performance, respectively. The microwave absorbing properties and infrared emissivity were investigated by vector network analyzer and dual-band infrared emissometer. It was found that the MnO2 nanoparticles were anchored on the aluminum sheets densely, and the concentration of MnO2 nanoparticles had a certain effect on absorption performance and infrared emissivity. As an absorber, with its polarization effect, resonance effect, and good impedance matching, the composite with the filler loading is 60 wt% can perform excellent microwave absorption performance (Chen et al. in Optik (Stuttg) 172:840–846, 2018). The minimum reflection loss reached − 42.93 dB at 12.72 GHz with a thickness of 1.0 mm, and the bandwidth that exceed − 10 dB ranged from 12.08 GHz to 13.36 GHz (Li et al. in J Colloid Interface Sci 507:131–138, 2017). As an infrared stealth material, the composite exhibits low infrared emissivity in the band range of 8–14 µm, which was attributed to the existence constituent of flake aluminum powder. The infrared emissivity reached 0.55 at the lowest, as well as enlarged with the increase of MnO2 concentration. Therefore, the Al@MnO2 composites could be a potential superior microwave and infrared compatible stealth material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2.
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Chen, C. Tian, Z. Che, T. Chen, Optik (Stuttg) 172, 840–846 (2018)

    CAS  Google Scholar 

  2. D. Li, X. Liang, W. Liu, J. Ma, Y. Zhang, G. Ji, W. Meng, J. Colloid Interface Sci. 507, 131–138 (2017)

    CAS  Google Scholar 

  3. B. Zhao, B. Fan, G. Shao, W. Zhao, R. Zhang, ACS Appl. Mater. Interfaces 7, 18815–18823 (2015)

    CAS  Google Scholar 

  4. K.Y. Fang, F. Fang, Mater. Lett. 230, 279–282 (2018)

    CAS  Google Scholar 

  5. J. Dong, Y. Lin, H. Zong, H. Yang, L. Wang, Z. Dai, Inorg. Chem. 58, 2031–2041 (2019)

    CAS  Google Scholar 

  6. C. Sun, Y. Guo, X. Xu, Q. Du, H. Duan, Y. Chen, H. Li, H. Liu, Compos. Part A Appl. Sci. Manuf. 92, 33–41 (2017)

    CAS  Google Scholar 

  7. Y. Qin, M. Zhang, Y. Guan, X. Huang, Ceram. Int. 45, 14312–14315 (2019)

    CAS  Google Scholar 

  8. H. Chu, Z. Zhang, Y. Liu, J. Leng, Carbon N. Y 98, 557–566 (2016)

    CAS  Google Scholar 

  9. G. Shen, B. Mei, H. Wu, H. Wei, X. Fang, Y. Xu, J. Phys. Chem. C 121, 3846–3853 (2017)

    CAS  Google Scholar 

  10. S. Qiu, H. Lyu, J. Liu, Y. Liu, N. Wu, W. Liu, ACS Appl. Mater. Interfaces 8, 20258–20266 (2016)

    CAS  Google Scholar 

  11. M. Qiao, X. Lei, Y. Ma, L. Tian, K. Su, Q. Zhang, Chem. Eng. J 304, 552–562 (2016)

    CAS  Google Scholar 

  12. M. Qiao, X. Lei, Y. Ma, L. Tian, W. Wang, K. Su, Q. Zhang, J. Alloys Compd. 693, 432–439 (2017)

    CAS  Google Scholar 

  13. Y. Wang, Y. Fu, X. Wu, W. Zhang, Q. Wang, J. Li, Ceram. Int. 43, 11367–11375 (2017)

    CAS  Google Scholar 

  14. L. Yuan, X. Weng, J. Xie, W. Du, L. Deng, J. Alloys Compd. 580, 108–113 (2013)

    CAS  Google Scholar 

  15. L. Yuan, X. Weng, W. Du, J. Xie, L. Deng, J. Alloys Compd. 583, 492–497 (2014)

    CAS  Google Scholar 

  16. R. Shu, H. Xing, X. Cao, X. Ji, D. Tan, Y. Gan, NANO 11, 1650047 (2015)

    Google Scholar 

  17. S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, ACS Nano 4, 2822–2830 (2010)

    CAS  Google Scholar 

  18. J. Zang, J. Ye, H. Qian, Y. Lin, X. Zhang, M. Zheng, Q. Dong, Electrochim. Acta 260, 783–788 (2018)

    CAS  Google Scholar 

  19. P. Zhao, M. Yao, H. Ren, N. Wang, S. Komarneni, Appl. Surf. Sci. 463, 931–938 (2019)

    CAS  Google Scholar 

  20. W. Du, X. Wang, J. Zhan, X. Sun, L. Kang, F. Jiang, X. Zhang, Q. Shao, M. Dong, H. Liu, V. Murugadoss, Z. Guo, Electrochim. Acta 296, 907–915 (2019)

    CAS  Google Scholar 

  21. M.S. Cao, J.C. Shu, X.X. Wang, X. Wang, M. Zhang, H.J. Yang, X.Y. Fang, J. Yuan, Ann. Phys. 531, 1–31 (2019)

    Google Scholar 

  22. S. Saadallah, A. Cablé, S. Hamamda, K. Chetehouna, M. Sahli, A. Boubertakh, S. Revo, N. Gascoin, Compos. Part B Eng. 151, 232–236 (2018)

    CAS  Google Scholar 

  23. X. Xiong, Y. Ji, M. Xie, C. You, L. Yang, Z. Liu, A.M. Asiri, X. Sun, Electrochem. Commun. 86, 161–165 (2018)

    CAS  Google Scholar 

  24. X. Jian, B. Wu, Y. Wei, S.X. Dou, X. Wang, W. He, N. Mahmood, ACS Appl. Mater. Interfaces 8, 6101–6109 (2016)

    CAS  Google Scholar 

  25. Y. Shao, W. Lu, H. Chen, J.Q. Xiao, Y. Qiu, T.W. Chou, Compos. Part B Eng 144, 111–117 (2018)

    CAS  Google Scholar 

  26. Y. Zeng, X. Zhang, Y. Meng, M. Yu, J. Yi, Y. Wu, X. Lu, Y. Tong, Adv. Mater. 29, 1–7 (2017)

    Google Scholar 

  27. X. Liang, L.F. Nazar, ACS Nano 10, 4192–4198 (2016)

    CAS  Google Scholar 

  28. Y. He, L. Lu, K. Sun, F. Wang, S. Hu, Cem. Concr. Compos. 92, 1–6 (2018)

    CAS  Google Scholar 

  29. C. Zhang, B. Wang, J. Xiang, C. Su, C. Mu, F. Wen, Z. Liu, ACS Appl. Mater. Interfaces 9, 28868–28875 (2017)

    CAS  Google Scholar 

  30. H. Zhao, X. Han, Z. Li, D. Liu, Y. Wang, Y. Wang, W. Zhou, Y. Du, J. Colloid Interface Sci 528, 174–183 (2018)

    CAS  Google Scholar 

  31. R. Shu, G. Zhang, J. Zhang, X. Wang, M. Wang, Y. Gan, J. Shi, J. He, J. Alloys Compd 736, 1–11 (2018)

    CAS  Google Scholar 

  32. N. Li, G.W. Huang, Y.Q. Li, H.M. Xiao, Q.P. Feng, N. Hu, S.Y. Fu, ACS Appl. Mater. Interfaces 9, 2973–2983 (2017)

    CAS  Google Scholar 

  33. F. Xu, L. Ma, Q. Huo, M. Gan, J. Tang, J. Magn. Magn. Mater. 374, 311–316 (2015)

    CAS  Google Scholar 

  34. B. Li, X. Weng, G. Wu, Y. Zhang, X. Lv, G. Gu, J. Saudi Chem. Soc. 21, 466–472 (2017)

    CAS  Google Scholar 

  35. Y. Wang, X. Wu, W. Zhang, C. Luo, J. Li, Q. Wang, Synth. Met. 231, 7–14 (2017)

    CAS  Google Scholar 

  36. M. Shi, C. Xu, Z. Yang, J. Liang, L. Wang, S. Tan, G. Xu, J. Alloys Compd. 764, 314–322 (2018)

    CAS  Google Scholar 

  37. M.S. Cao, Y.Z. Cai, P. He, J.C. Shu, W.Q. Cao, J. Yuan, Chem. Eng. J 359, 1265–1302 (2019)

    CAS  Google Scholar 

  38. H. Luo, X. Zhang, S. Huang, D. Shan, L. Deng, L. He, J. He, Y. Xu, H. Chen, C. Liao, Infrared Phys. Technol. 99, 123–128 (2019)

    CAS  Google Scholar 

  39. Y. Huang, J. Ji, Y. Chen, X. Li, J. He, X. Cheng, S. He, Y. Liu, J. Liu, Compos. Part B Eng. 163, 598–605 (2019)

    CAS  Google Scholar 

  40. B. Wen, M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, X. Fang, W. Wang, J. Yuan, Adv. Mater. 26, 3484–3489 (2014)

    CAS  Google Scholar 

  41. L. Wang, X. Li, Q. Li, Y. Zhao, R. Che, ACS Appl. Mater. Interfaces 10, 22602–22610 (2018)

    CAS  Google Scholar 

  42. J. Deng, S. Li, Y. Zhou, L. Liang, B. Zhao, X. Zhang, R. Zhang, J. Colloid Interface Sci. 509, 406–413 (2018)

    CAS  Google Scholar 

  43. Y. Zuo, Z. Yao, H. Lin, J. Zhou, P. Liu, W. Chen, C. Shen, J. Alloys Compd. 746, 496–502 (2018)

    CAS  Google Scholar 

  44. E. Wäckelgård, H. Svedung, Infrared Phys. Technol. 78, 275 (2016)

    Google Scholar 

  45. Z. Liu, H. Xing, L. Wang, D. Tan, Y. Gan, X. Ji, G. Xu, NANO 11, 1650091 (2016)

    CAS  Google Scholar 

  46. X. Zhang, Y. Tian, W. Li, S. Dou, L. Wang, H. Qu, J. Zhao, Y. Li, Sol. Energy Mater. Sol. Cells 200, 109916 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51477002 and 51707003), and the University Synergy Innovation Program of Anhui Province (GXXT-2019-028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglong Xing.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Xing, H., Shi, R. et al. Facial synthesis of Al@MnO2 with enhanced microwave absorption and low infrared emissivity. J Mater Sci: Mater Electron 31, 18791–18802 (2020). https://doi.org/10.1007/s10854-020-04419-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04419-y

Navigation