Skip to main content
Log in

Room-temperature ultraviolet-ozone annealing of ZnO and ZnMgO nanorods to attain enhanced optical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnO and ZnMgO nanorods have proven to be promising materials for sensing, UV and deep UV based optoelectronic applications. A major drawback of ZnO and ZnMgO based thin films and nanorods is the presence of native point defects which deteriorates their optical efficiency and becomes an impediment to their efficient device applications. The furnace and rapid thermal annealing processes have overcome this up to a great extent but being high temperature processes, they put many fabrication and technological limits in device fabrication. Especially keeping an eye on the future flexible devices, herein we report ultraviolet-ozone (UVO) annealing as a room-temperature, simple and cost-effective annealing method to improve the optical efficiency of ZnO and ZnMgO nanorods along with control of defect states. The ZnO and ZnMgO nanorods were grown by hydrothermal method and annealed in UVO irradiation. UVO annealing substantially improved near band emission and suppressed defect band emissions. It is found that zinc interstitial atoms migrate from the top portion of ZnO nanorods towards the bottom of nanorods after UVO annealing, resulting in reduced zinc interstitial defects in the top portion of nanorods. X-ray diffraction results showed improvement in structural properties. XPS results confirmed suppression of oxygen vacancies and zinc interstitials and improvement in lattice oxygen in the ZnO nanorods after UVO annealing. Optimum times of UVO annealing for ZnO and ZnMgO nanorods were 30 and 50 min respectively. These findings will be helpful for the further development of ZnO and ZnMgO nanorods based high performance optoelectronic devices and sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X.W. Sun, J.Z. Huang, J.X. Wang, Z. Xu, A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm. LETTERS (2008). https://doi.org/10.1021/nl080340z

    Article  Google Scholar 

  2. S.J. An, J.H. Chae, G.-C. Yi, G.H. Park, Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays. Appl. Phys. Lett. 92(12), 121108 (2008). https://doi.org/10.1063/1.2903153

    Article  CAS  Google Scholar 

  3. H. Guo, J. Zhou, Z. Lin, ZnO nanorod light-emitting diodes fabricated by electrochemical approaches. Electrochem. Commun. 10(1), 146–150 (2008). https://doi.org/10.1016/j.elecom.2007.11.010

    Article  CAS  Google Scholar 

  4. N. Liu, G. Fang, W. Zeng, H. Zhou, F. Cheng, Q. Zheng, L. Yuan, X. Zou, X. Zhao, Direct growth of lateral ZnO nanorod UV photodetectors with schottky contact by a single-step hydrothermal reaction. ACS Appl. Mater. Interfaces 2(7), 1973–1979 (2010). https://doi.org/10.1021/am100277q

    Article  CAS  Google Scholar 

  5. Y. Li, F. Della Valle, M. Simonnet, I. Yamada, J.J. Delaunay, High-performance UV detector made of ultra-long ZnO bridging nanowires. Nanotechnology 20, 4, (2009). https://doi.org/10.1088/0957-4484/20/4/045501

    Article  Google Scholar 

  6. W.S. Wang, T.T. Wu, T.H. Chou, Y.Y. Chen, A ZnO nanorod-based SAW oscillator system for ultraviolet detection. Nanotechnology 20, 13 (2009). https://doi.org/10.1088/0957-4484/20/13/135503

    Article  CAS  Google Scholar 

  7. J.J. Hassan, M.A. Mahdi, S.J. Kasim, N.M. Ahmed, H. Abu Hassan, Z. Hassan, High sensitivity and fast response and recovery times in a ZnO nanorod array/p-Si self-powered ultraviolet detector. Appl. Phys. Lett. 101(26), 99–102 (2012). https://doi.org/10.1063/1.4773245.ac

    Article  Google Scholar 

  8. Y. Zhao, J. Zhang, D. Jiang, C. Shan, Z. Zhang, B. Yao, D. Zhao, D. Shen, Ultraviolet photodetector based on a MgZnO film grown by radio-frequency magnetron sputtering. ACS Appl. Mater. Interfaces 1(11), 2428–2430 (2009). https://doi.org/10.1021/am900531u

    Article  CAS  Google Scholar 

  9. R. Bhardwaj, P. Sharma, R. Singh, M. Gupta, S. Mukherjee, High Responsivity MgxZn1–xO Based Ultraviolet Photodetector Fabricated by Dual Ion Beam Sputtering. IEEE Sensors J 18(7), 2744–2750 (2018). https://doi.org/10.1109/JSEN.2018.2803678

    Article  CAS  Google Scholar 

  10. B.S. Kang, W.W. Heo, L.C. Tien, D.P. Norton, F. Ren, B.P. Gila, S.J. Peatron, Hydrogen and ozone gas sensing using multiple ZnO nanorods. Appl. Phys. A Mater. Sci. Process. 80(5), 1029–1032 (2005). https://doi.org/10.1007/s00339-004-3098-8

    Article  CAS  Google Scholar 

  11. C. Catto, L.F. da Silva, C. Ribeiro, S. Bernardini, K. Aguir, E. Longo, V.R. Mastelaro, An easy method of preparing ozone gas sensors based on ZnO nanorods. RSC Adv. 5(25), 19528–19533 (2015). https://doi.org/10.1039/C5RA00581G

    Article  CAS  Google Scholar 

  12. Y. Zeng, T. Zhang, M. Yuan, M. Kang, G. Lu, R. Wang, H. Fan, Y. He, H. Yang, Growth and selective acetone detection based on ZnO nanorod arrays. Sens. Actuators B Chem 143(1), 93–98 (2009). https://doi.org/10.1016/j.snb.2009.08.053

    Article  CAS  Google Scholar 

  13. Z.L. Wang, Nanostructures of zinc oxide. Mater. Today 7(6), 26–33 (2004). https://doi.org/10.1016/S1369-7021(04)00286-X

    Article  CAS  Google Scholar 

  14. V. Padmavathy, S. Sankar, Tuning the optical properties of ZnO:Cd by doping La and Y. Superlattices Microstruct. 128, 127–135 (2019). https://doi.org/10.1016/j.spmi.2018.11.010

    Article  CAS  Google Scholar 

  15. X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang, R. Liu, Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Sci. Rep. 4, 4–11 (2014). https://doi.org/10.1038/srep04596

    Article  CAS  Google Scholar 

  16. L. Schmidt-Mende, J.L. MacManus-Driscoll, ZnO–nanostructures, defects, and devices. Materials today 10(5), 40–48 (2007). https://doi.org/10.1016/S1369-7021(07)70078-0

    Article  CAS  Google Scholar 

  17. L. Liao, H.B. Lu, J.C. Li, H. He, D.F. Wang, D.J. Fu, C. Liu, Size dependence of gas sensitivity of ZnO nanorods. J. Phys. Chem. C 111(5), 1900–1903 (2007). https://doi.org/10.1021/jp065963k

    Article  CAS  Google Scholar 

  18. K.M. Wong, Y. Fang, A. Devaux, L. Wen, J. Huang, L.D. Colac, Y. Lei, Assorted analytical and spectroscopic techniques for the optimization of the defect-related properties in size-controlled ZnO nanowires. Nanoscale 3(11), 4830–4839 (2011). https://doi.org/10.1039/C1NR10806A

    Article  CAS  Google Scholar 

  19. S.J. Clark, J. Robertson, S. Lany, A. Zunger, Intrinsic defects in ZnO calculated by screened exchange and hybrid density functional. Phys. Rev. B 81, 115311 (2010). https://doi.org/10.1103/PhysRevB.81.115311

    Article  CAS  Google Scholar 

  20. A. Janotti, C.G. Van de Walle, Native point defects in ZnO. Phys. Rev. B 76, 165202 (2007). https://doi.org/10.1103/PhysRevB.76.165202

    Article  CAS  Google Scholar 

  21. F. Kohan, G. Ceder, D. Morgan, G. Chris, Van de Walle, First-principles study of native point defects in ZnO. Phys. Rev. B 61, 15019 (2000). https://doi.org/10.1103/PhysRevB.61.15019

    Article  CAS  Google Scholar 

  22. M. Liu, A.H. Kitai, P. Mascher, Point defects and luminescence centres in zinc oxide and zinc oxide doped with manganese. J. Lumin. 54, 35 (1992). https://doi.org/10.1016/0022-2313(92)90047-D

    Article  CAS  Google Scholar 

  23. S.K. Pandey, S.K. Pandey, C. Mukherjee, P. Mishra, M. Gupta, S.R. Barman, S.W. D’Souza, S. Mukherjee, Effect of growth temperature on structural, electrical and optical properties of dual ion beam sputtered ZnO thin films. J. Mater. Sci.: Mater. Electron. 24, 2541 (2013). https://doi.org/10.1007/s10854-013-1130-5

    Article  CAS  Google Scholar 

  24. C.H. Ahn, Y.Y. Kim, D.C. Kim, S.K. Mohanta, H.K. Cho, A comparative analysis of deep level emission in ZnO layers deposited by various methods. J. Appl. Phys. 105(1), 1–6 (2009). https://doi.org/10.1063/1.3054175

    Article  CAS  Google Scholar 

  25. K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A. Voigt, Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. Appl. Phys. Lett. 403(1996), 403 (1995). https://doi.org/10.1063/1.116699@apl.2019.APLCLASS2019.issue-1

    Article  Google Scholar 

  26. B. Lin, Z. Fu, Y. Jia, Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl. Phys. Lett. 79(7), 943–945 (2001). https://doi.org/10.1063/1.1394173@apl.2019.APLCLASS2019.issue-1

    Article  CAS  Google Scholar 

  27. Q.X. Zhao, P. Klason, M. Willander, H.M. Zhong, W. Lu, J.H. Yang, Deep-level emissions influenced by O and Zn implantations in ZnO. Appl. Phys. Lett. 87(21), 1–3 (2005). https://doi.org/10.1063/1.2135880

    Article  CAS  Google Scholar 

  28. C.C. Li, Z.F. Du, L.M. Li, H.C. Yu, Q. Wan, T.H. Wang, Surface-depletion controlled gas sensing of ZnO nanorods grown at room temperature. Appl. Phys. Lett. 91(3), 2005–2008 (2007). https://doi.org/10.1063/1.2752541

    Article  CAS  Google Scholar 

  29. B. Djurišić, Y.H. Leung, K.H. Tam, Green, yellow, and orange defect emission from ZnO nanostructures: Influence of excitation wavelength. Appl. Phys. Lett. 88(10), 2006–2008 (2006). https://doi.org/10.1063/1.2182096

    Article  CAS  Google Scholar 

  30. D.-R. Hang, S. Islam, K. Sharma, S.-W. Kuo, C.-Z. Zhang, J.-J. Wang, Annealing effects on the optical and morphological properties of ZnO nanorods on AZO substrate by using aqueous solution method at low temperature. Nanoscale Res. Lett. 9(1), 632 (2014). https://doi.org/10.1186/1556-276X-9-632

    Article  CAS  Google Scholar 

  31. R. Martins, E. Fortunato, P. Nunes, I. Ferreira, A. Marques, M. Bender, N. Katsarakis, V. Cimalla, G. Kiriakidis, Zinc oxide as an ozone sensor. J. Appl. Phys. 96(3), 1398–1408 (2004). https://doi.org/10.1063/1.1765864

    Article  CAS  Google Scholar 

  32. S. Jeong, J. Moon, Low-temperature, solution-processed metal oxide thin film transistors. J. Mater. Chem. 22(4), 1243–1250 (2012). https://doi.org/10.1039/C1JM14452A

    Article  CAS  Google Scholar 

  33. W.J. Scheideler, V. Subramanian, UV-annealing-enhanced stability in high-performance HTMLed InOx transistors. IEEE Trans Electron. Dev. Manuf. Conf. (2017). https://doi.org/10.1109/EDTM.2017.7947559

    Article  Google Scholar 

  34. H. Ghadi, P. Murkute, A. Ghosh, S.M.M.D. Dwivedi, A. Mondal, S. Chakrabarti, Ultrasensitive zinc magnesium oxide nanorods based micro-sensor platform for UV detection and light trapping. Sens. Actuators A 278, 127–139 (2018). https://doi.org/10.1016/j.sna.2018.05.028

    Article  CAS  Google Scholar 

  35. P. Murkute, H. Ghadi, S. Saha, S.K. Pandey, S. Chakrabarti, Enhancement in optical characteristics of c-axis-oriented radio frequency–sputtered ZnO thin films through growth ambient and annealing temperature optimization. Mater. Sci. Semicond. Process. 66, no. April, pp. 1–8 (2017). https://doi.org/10.1016/j.mssp.2017.03.026

    Article  CAS  Google Scholar 

  36. V. Strano, R.G. Urso, M. Scuderi, K.O. Iwu, F. Simone, E. Ciliberto, C. Spinella, S. Mirabella, Double role of HMTA in ZnO nanorods grown by chemical bath deposition. J. Phys. Chem. C 118(48), 28189–28195 (2014). https://doi.org/10.1021/jp507496a

    Article  CAS  Google Scholar 

  37. S. Baruah, J. Dutta, Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater. 10, 1 (2009). https://doi.org/10.1088/1468-6996/10/1/013001

    Article  CAS  Google Scholar 

  38. Y. Wei, Hydrothermal synthesis and characterization of ZnO nanorods. Mater. Sci. Eng. A 393(40), 80–82 (2004). https://doi.org/10.1016/j.msea.2004.09.067

    Article  CAS  Google Scholar 

  39. Y.H. Kim, J.S. Heo, T.H. Kim, S. Park, M.H. Yoon, J. Kim, M.S. Oh, G.R. Yi, Y.Y. Noh, S.K. Park, Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films. Nature 489(7414), 128–132 (2012). https://doi.org/10.1038/nature11434

    Article  CAS  Google Scholar 

  40. M. Norouzi, M. Kolahdouz, P. Ebrahimi, M. Ganjian, R. Soleimanzadeh, K. Narimani, H. Radamson, Thermoelectric energy harvesting using array of vertically aligned Al-doped ZnO nanorods. Thin Solid Films 619, 41–47 (2016). https://doi.org/10.1016/j.tsf.2016.10.041

    Article  CAS  Google Scholar 

  41. H.S. Lee, J.Y. Lee, T.W. Kim, D.W. Kim, W.J. Cho, Formation mechanism of preferential c-axis oriented ZnO thin films grown on p-Si substrates. J. Mater. Sci. 39(10), 3525–3528 (2004). https://doi.org/10.1023/B:JMSC.0000026968.24617.f6

    Article  CAS  Google Scholar 

  42. A. Singh, D. Vij, P.K. Kumar, M. Khanna, S. Kumar, Gautam, K.H. Chae, Investigation of phase segregation in sol–gel derived ZnMgO thin films. Semicond. Sci. Technol. 28, 2, 2013. https://doi.org/10.1088/0268-1242/28/2/025004

  43. W. Chebil, A. Fouzri, A. Fargi, B. Azeza, Z. Zaaboub, V. Sallet, Characterization of ZnO thin films grown on different p-Si substrate elaborated by solgel spin-coating method. Mater. Res. Bull. Vol 70, 719–727 (2015). https://doi.org/10.1016/j.materresbull.2015.06.003

    Article  CAS  Google Scholar 

  44. W. Muhammad, N. Ullah, M. Haroona, B.H. Abbasi, Optical, morphological and biological analysis of zinc oxide nanoparticles (ZnO NPs) using Papaver somniferum L, RSC Adv. 9, 29541 (2019).  https://doi.org/10.1039/C9RA04424H

  45. P. Erhart, A. Klein, K. Albe, First-principles study of the structure and stability of oxygen defects in zinc oxide. Phys. Rev. B 72(8), 085213 (2005). https://doi.org/10.1103/PhysRevB.72.085213

    Article  CAS  Google Scholar 

  46. A. Janotti, C.G. Van de Walle, Oxygen vacancies in ZnO. Appl. Phys. Lett. 87(12), 122102 (2005). https://doi.org/10.1063/1.2053360

    Article  CAS  Google Scholar 

  47. A.L. Patterson, The Scherrer formula for X-ray particle size determination. Phys Rev 56(10), 978 (1939). https://doi.org/10.1103/PhysRev.56.978

    Article  CAS  Google Scholar 

  48. A. Sett, M. Mondal, T.K. Bhattacharyya, Hierarchical ZnO nanorods with tailored surface defects for enhanced acetone sensing. IEEE Sens. J. 19(10), 3601–3608 (2019). https://doi.org/10.1109/JSEN.2019.2896919

    Article  CAS  Google Scholar 

  49. A. Sett, S. Dey, P.K. Guha, T.K. Bhattacharyya, ZnO/γ-Fe2O3 heterostructure toward high-performance acetone sensing. IEEE Sens. J. 19, 8576–8582 (2019). https://doi.org/10.1109/JSEN.2019.2921421

    Article  CAS  Google Scholar 

  50. A. Jin, R.J. Narayan. Tiwari, Ultraviolet-illumination-enhanced photoluminescence effect in zinc oxide thin films. J. Appl. Phys. 98, 8 (2005). https://doi.org/10.1063/1.2108156

    Article  CAS  Google Scholar 

  51. W.M. Kwok, A.B. Djurišić, Y.H. Leung, W.K. Chan, D.L. Phillips, Time-resolved photoluminescence study of the stimulated emission in ZnO nanoneedles. Appl. Phys. Lett. 87(9), 2003–2006 (2005). https://doi.org/10.1063/1.2035871

    Article  CAS  Google Scholar 

  52. R. Radoi, P. Fernández, J. Piqueras, M.S. Wiggins, J. Solis, Luminescence properties of mechanically milled and laser irradiated ZnO. Nanotechnology 14(7), 794 (2003). https://doi.org/10.1088/0957-4484/14/7/317

    Article  CAS  Google Scholar 

  53. N. Ohashi, N. Ebisawa, T. Sekiguchi, I. Sakaguchi, Y. Wada, T. Takenaka, H. Haneda, Yellowish-white luminescence in codoped zinc oxide. Appl. Phys. Lett. 86(9), 091902 (2005). https://doi.org/10.1063/1.1871349

    Article  CAS  Google Scholar 

  54. J.H. Lim, S.M. Lee, H.S. Kim, H.Y. Kim, J. Park, S.B. Jung, G.C. Park, J. Kim, J. Joo, Synergistic effect of indium and gallium co-doping on growth behavior and physical properties of hydrothermally grown ZnO nanorods. Sci. Rep. 7, 41992 (2017). https://doi.org/10.1038/srep41992

    Article  CAS  Google Scholar 

  55. M.J. Alam, P. Murkute, S. Sushama, H. Ghadi, S. Chakrabarti, Improving optical properties and controlling defect-bound states in ZnMgO thin films through ultraviolet–ozone annealing. Thin Solid Films 708, 138112 (2020). https://doi.org/10.1016/j.tsf.2020.138112

    Article  CAS  Google Scholar 

  56. Q. Bao, X. Liu, Y. Xia, F. Gao, L.D. Kauffmann, O. Margeat, J. Ackermannc, and M. Fahlmana,“Effects of ultraviolet soaking on surface electronic structures of solution processed ZnO nanoparticle films in polymer solar cells”. J. Mater. Chem. A 2(41), 17676–17682 (2014). https://doi.org/10.1039/C4TA02695K

    Article  CAS  Google Scholar 

  57. K. Liu, M. Sakurai, M. Aono, ZnO-based ultraviolet photodetectors. Sensors 10(9), 8604–8634 (2010). https://doi.org/10.3390/s100908604

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge IITBNF and SAIF, Indian Institute of Technology Bombay, for providing access to the equipment used in the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhananda Chakrabarti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, M.J., Murkute, P., Sushama, S. et al. Room-temperature ultraviolet-ozone annealing of ZnO and ZnMgO nanorods to attain enhanced optical properties. J Mater Sci: Mater Electron 31, 18777–18790 (2020). https://doi.org/10.1007/s10854-020-04418-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04418-z

Navigation