Skip to main content
Log in

Mechanical Performance of Zr-Containing 354-Type Al-Si-Cu-Mg Cast Alloy: Role of Geometrical Discontinuities

Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The main objective of this study was to evaluate the performance of 354-type Al-Si-Cu-Mg cast alloys at both ambient (25 °C) and elevated temperatures (250 °C) through the addition of zirconium (Zr), nickel (Ni) and manganese (Mn). The motive behind these additions was to develop thermally stable alloys capable of resisting softening instigated by prolonged exposure at elevated temperatures and hence preserve acceptable mechanical properties. Another parameter affecting performance is geometry. Four different notch geometries were employed: two hole-type geometries and two types of V-notches (symmetric and asymmetric for each). The results reveal that the presence of asymmetric notches in the tensile test bars proved to be more deleterious than symmetric notches to the notch tensile strength and percentage elongation to fracture at both 25 °C and at 250 °C. The softening that took place during tensile testing at 250 °C rendered the alloys some ductility (in particular, the M1S (354 + 0.3 wt.% Zr), M2S (354 + 0.3 wt.% Zr + 2 wt.% Ni) and M3S alloys (354 + 0.3 wt.% Zr +0.75 wt.% Mn)), as a result, the notched tensile bars with asymmetric holes exhibited high strength values for these alloys compared to the tensile strength of unnotched bars subjected to similar heat treatment conditions owing to the presence of notches. The notch sensitivity ratios vary between 0.78 and 0.95 for asymmetric holes versus 0.7 and 0.85 for asymmetric V-notches at room temperature and 0.9 and 1.07 for asymmetric holes versus 0.7 and 0.92 for asymmetric V-notches at 250 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. G. Elizondo and G. Hernan, “Effect of Ni, Mn, Zr and Sc Additions on the Performance of Al-Si-Cu-Mg Alloys,” Ph.D. dissertation, Université du Québec à Chicoutimi, 2016

  2. H.S. Jacobo, “Improving the Performance of 354 Type Alloy,” Ph.D. dissertation, Université du Québec à Chicoutimi, 2010

  3. S.K. Shaha, “Development and Characterization of Cast Modified Al-Si-Cu-Mg Alloys for Heat Resistant Power Train Applications,” Ph.D., Ryerson University, 2015

  4. A. Loay, “Effects of Alloying Elements on Room and High Temperature Tensile Properties of Al-Si-Cu-Mg Base Alloys,” M.Sc. dissertation, Université du Québec à Chicoutimi, 2017

  5. R. Mahmudi, P. Sepehrband, and H.M. Ghasemi, Improved Properties of A319 Aluminum Casting Alloy Modified with Zr, Mater. Lett., 2006, 60, p 2606–2610

    Article  CAS  Google Scholar 

  6. K.E. Knipling, D.C. Dunand, and D.N. Seidman, Nucleation and Precipitation Strengthening in Dilute Al-Ti and Al-Zr Alloys, Metall. Mater. Trans. A, 2007, 38(10), p 2552–2563

    Article  Google Scholar 

  7. K.E. Knipling, D.C. Dunand, and D.N. Seidman, Precipitation Evolution in Al-Zr and Al-Zr-Ti Alloys during Isothermal Aging at 375–425 C, Acta Mater., 2008, 56(1), p 114–127

    Article  CAS  Google Scholar 

  8. M.H. Abdelaziz, H.W. Doty, S. Valtierra, and F.H. Samuel, Mechanical Performance of Zr-Containing 354-Type Al-Si-Cu-Mg Cast Alloy: Role of Additions and Heat Treatment, Adv. Mater. Sci. Eng., 2018

  9. M.H. Abdelaziz, H.W. Doty, S. Valtierra, and F.H. Samuel, Static Versus Dynamic Thermal Exposure of Transition Elements-Containing Al-Si-Cu-Mg Cast Alloy, Mater. Sci. Eng., A, 2019, 739, p 499–512

    Article  CAS  Google Scholar 

  10. J. Hernandez-Sandoval, G. Garza-Elizondo, A. Samuel, S. Valtiierra, and F. Samuel, The Ambient and High Temperature Deformation Behavior of Al-Si-Cu-Mg Alloy with Minor Ti, Zr, Ni Additions, Mater. Des., 2014, 58, p 89–101

    Article  CAS  Google Scholar 

  11. Z. Zeng and A. Fatemi, Elasto-Plastic Stress and Strain Behaviour at Notch Roots under Monotonic and Cyclic Loadings, J. Strain Anal. Eng. Des., 2001, 36(3), p 287–300

    Article  Google Scholar 

  12. C. Yen and T.J. Dolan, A Critical Review of the Criteria for Notch-Sensitivity in Fatigue of Metals, University of Illinois at Urbana Champaign, College of Engineering. Engineering Experiment Station, 1952

  13. T. Hussain, M. Memon, and Z. Mwmon, Prediction of elastic-plastic behavior of structures at notches, Mehran Univ. Res. J. Eng. Technol., 2012, 31(3), p 545–552

    Google Scholar 

  14. H. Zhu, J. Xu, and M. Feng, Singular fields near a sharp V-notch for power law creep material, Int. J. Fract., 2011, 168(2), p 159–166

    Article  Google Scholar 

  15. D. Tanner, W. Sun, and T. Hyde, FE Analysis of a Notched Bar under Thermomechanical Fatigue Using a Unified Viscoplasticity Model, Procedia Eng., 2011, 10, p 1081–1086

    Article  CAS  Google Scholar 

  16. H. Neuber, Theory of Notch Stresses: Principles for Exact Stress Calculation, Vol 74, JW Edwards, Ann Arbor, 1946

    Google Scholar 

  17. A. Wahl, R. Beeuwkes Jr., and E. Pittsburgh, Stress Concentration Produced by Holes and Notches, 1934

  18. G. Sachs, et al., Nondestructive Measurement of Residual and Enforced Stresses by Means of X-ray Diffraction I: Correlated Abstract of the Literature, 1945

  19. A.M. Agog1no, Notch Effects, Stress State, ail Ductility, 1978

  20. P. Ludwik and I. Scheu, Notch Effects in Tests of Mild Steel Material, Stahl Eisen, 1923, 43, p 95

    Google Scholar 

  21. G.E. Dieter and D.J. Bacon, Mechanical Metallurgy, Vol 3, McGraw-Hill, New York, 1986

    Google Scholar 

  22. A. Bayram, The Influence of Manganese Addition on Mechanical Properties of Commercial Al-4 mg Casting Alloys, Materialwiss. Werkstofftech., 2004, 35(1), p 29–35

    Article  CAS  Google Scholar 

  23. H. Yamagata, The science and technology of materials in automotive engines, Elsevier, Amsterdam, 2005

    Book  Google Scholar 

  24. M.H. Abdelaziz, Microstructural and Mechanical Characterization of Transition Elements-Containing Al-Si-Cu-Mg Alloys for Elevated-Temperature Applications, Doctoral dissertation, Université du Québec à Chicoutimi, 2018

  25. M. H. Abdelaziz, E. M. Elgallad, A. M. Samuel, H. W. Doty, and F. H. Samuel. “High- Temperature Tensile Fractography of Zr-, Ni-, and Mn-Containing Al-Si-Cu-Mg Cast Alloys, Adv. Mater. Sci. Eng., 2020.

  26. M.H. Abdelaziz, E.M. Elgallad, H.W. Doty, S. Valtierra, and F.H. Samuel, Melting and Solidification Characteristics of Zr-, Ni-, and Mn-Containing 354-Type Al-Si-Cu-Mg Cast Alloys, Philos. Mag., 2019, 99(13), p 1633–1655

    Article  CAS  Google Scholar 

  27. A. Bayram, A. Uĝuz, and M. Ula, Effects of Microstructure and Notches on the Mechanical Properties of Dual-Phase Steels, Mater. Charact., 1999, 43(4), p 259–269

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Abdelaziz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelaziz, M.H., Elsharkawi, E.A., Doty, H.W. et al. Mechanical Performance of Zr-Containing 354-Type Al-Si-Cu-Mg Cast Alloy: Role of Geometrical Discontinuities. J. of Materi Eng and Perform 29, 6640–6651 (2020). https://doi.org/10.1007/s11665-020-05112-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05112-1

Keywords

Navigation