Skip to main content
Log in

Numerical Investigation on Molten Pool Dynamics and Defect Formation in Electron Beam Welding of Aluminum Alloy

Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Penetration depth fluctuations and spiking defects, which appear almost simultaneously during partial penetration electron beam welding (EBW) of aluminum alloy, lead to weakened joint strength. In this study, a novel dynamic heat source model, which can be used to understand the coupling behavior between the electron beam and keyhole wall, is proposed to simulate the EBW process. While studying molten pool patterns, the formation mechanism of weld defects is also discussed in detail. In addition, a corresponding experimental test is carried out as verification. The weld bead profile and dimensions predicted by simulations agree well with the experimental data. The periodic oscillation of the molten pool is the root cause of the penetration depth fluctuations. The simulation results show that spiking defect formation has four crucial steps: keyhole collapse, liquid metal backfilling, cutting by the molten pool boundary and liquid metal backfilling. The findings from this work provide a fundamental understanding of the formation mechanism of the penetration depth fluctuations and spiking defects during EBW of aluminum alloy to improve the weld bead quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. H. Schultz, Electron Beam Welding, Woodhead Publishing, Abington, 1994

    Book  Google Scholar 

  2. M.S. Weglowski, S. Błacha, and A. Phillips, Electron Beam Welding-Techniques and Trends-Review, Vacuum, 2016, 130, p 72–92. https://doi.org/10.1016/j.vacuum.2016.05.004

    Article  CAS  Google Scholar 

  3. S.R. Koteswara Rao, G. Madhusudhan Reddy, K. Srinivasa Rao, M. Kamaraj, and K. Prasad Rao, Reasons for Superior Mechanical and Corrosion Properties of 2219 Aluminum Alloy Electron Beam Welds, Mater. Charact., 2005, 55, p 345–354. https://doi.org/10.1016/j.matchar.2005.07.006

    Article  CAS  Google Scholar 

  4. J. Zhou, H.L. Tsai, and T.F. Lehnhoff, Investigation of Transport Phenomena and Defect Formation in Pulsed Laser Keyhole Welding of Zinc-coated Steels, J. Phys. D. Appl. Phys., 2006, 39, p 5338–5355. https://doi.org/10.1088/0022-3727/39/24/036

    Article  CAS  Google Scholar 

  5. D.A. Schauer and W.H. Geidt, Prediction of Electron Beam Welding Spiking Tendency, Weld. J., 1978, 57, p 189–195 http://files.aws.org/wj/supplement/WJ_1978_07_s189.pdf

  6. P.S. Wei, K.C. Chuang, T. DebRoy, and J.S. Ku, Scaling of Spiking and Humping in Keyhole Welding, J. Phys. D. Appl. Phys., 2011, 44, p 245501. https://doi.org/10.1088/0022-3727/44/24/245501

    Article  CAS  Google Scholar 

  7. X. Wang, H. Chen, and H. Liu, Investigation of the Relationships of Process Parameters, Molten Pool Geometry and Shear Strength in Laser Transmission Welding of Polyethylene Terephthalate and Polypropylene, Mater. Des., 2014, 55, p 343–352. https://doi.org/10.1016/j.matdes.2013.09.052

    Article  CAS  Google Scholar 

  8. W. Tan and Y.C. Shin, Analysis of Multi-phase Interaction and its Effects on Keyhole Dynamics with a Multi-physics Numerical Model, J. Phys. D. Appl. Phys., 2014, 47, p 345501. https://doi.org/10.1088/0022-3727/47/34/345501

    Article  CAS  Google Scholar 

  9. W.I. Cho, S.J. Na, C. Thomy, and F. Vollertsen, Numerical Simulation of Molten Pool Dynamics in High Power Disk Laser Welding, J. Mater. Process. Technol., 2012, 212, p 262–275. https://doi.org/10.1016/j.jmatprotec.2011.09.011

    Article  CAS  Google Scholar 

  10. H. Zhao, W. Niu, B. Zhang, Y. Lei, M. Kodama, and T. Ishide, Modelling of Keyhole Dynamics and Porosity Formation Considering the Adaptive Keyhole Shape and Three-phase Coupling During Deep-penetration Laser Welding, J. Phys. D. Appl. Phys., 2011, 44(48), p 485302. https://doi.org/10.1088/0022-3727/44/48/485302

    Article  CAS  Google Scholar 

  11. H. Tong and W.H. Giedt, Radiographs of the Electron Beam Welding Cavity, Rev. Sci. Instrum., 1969, 40(10), p 1283–1285. https://doi.org/10.1063/1.1683765

    Article  Google Scholar 

  12. A. Matsunawa, M. Mizutani, S. Katayama, and N. Seto, Porosity Formation Mechanism and its Prevention in Laser Welding, Weld. Int., 2003, 17(6), p 431–437. https://doi.org/10.1533/wint.2003.3138

    Article  Google Scholar 

  13. L.J. Huang, X.M. Hua, D.S. Wu, and F. Li, Numerical Study of Keyhole Instability and Porosity Formation Mechanism in Laser Welding of Aluminum Alloy and Steel, J. Mater. Process. Technol., 2018, 252, p 421–431. https://doi.org/10.1016/j.jmatprotec.2017.10.011

    Article  CAS  Google Scholar 

  14. Y. Arata, F. Matsuda and T. Murakami, Some Dynamic Aspects of Weld Molten Metal in Electron Beam Welding, Transactions of JWRI, 1973, p 152–161

  15. W. Huang and R. Kovacevic, Feasibility Study of Using Acoustic Signals for Online Monitoring of the Depth of Weld in the Laser Welding of High-strength Steels, Proc. Inst. Mech. Eng. B-J. Eng., 2009, 223(4), p 343–361. https://doi.org/10.1243/09544054JEM1320

    Article  CAS  Google Scholar 

  16. X. Hao and G. Song, Spectral Analysis of the Plasma in Low-power Laser/arc Hybrid Welding of Magnesium Alloy, IEEE Trans. Plasma Sci., 2009, 37, p 76–82. https://doi.org/10.1109/TPS.2008.2005720

    Article  CAS  Google Scholar 

  17. S. Katayama, M. Mizutani, and A. Matsunawa, Development of Porosity Prevention Procedures during Laser Welding, OPT. Eng., 2003, https://doi.org/10.1117/12.497801

    Article  Google Scholar 

  18. N. Seto, S. Katayama, and A. Matsunawa, Porosity Formation Mechanism and Reduction Method in CO2 Laser Welding of Stainless Steel, Weld. Int., 2002, 16, p 451–460. https://doi.org/10.1080/09507110209549558

    Article  Google Scholar 

  19. W. Meng, Z.G. Li, F.G. Lu, Y.X. Wu, J.H. Chen, and S. Katayama, Porosity Formation Mechanism and its Prevention in Laser Lap Welding for T-joints, J. Mater. Process. Technol., 2014, 214, p 1658–1664. https://doi.org/10.1016/j.jmatprotec.2014.03.011

    Article  Google Scholar 

  20. M. Courtois, M. Carin, P.L. Masson, S. Gaied, and M. Balabane, Guidelines in the Experimental Validation of a 3D Heat and Fluid Flow Model of Keyhole Laser Welding, J. Phys. D. Appl. Phys., 2016, 49(15), p 155503–155516. https://doi.org/10.1088/0022-3727/49/15/155503

    Article  CAS  Google Scholar 

  21. J. Xu, Y. Rong, Y. Huang, P. Wang, and C. Wang, Keyhole-Induced Porosity Formation During Laser Welding, J. Mater. Process. Technol., 2018, 252, p 720–727. https://doi.org/10.1016/j.jmatprotec.2017.10.038

    Article  Google Scholar 

  22. J.H. Cho and S.J. Na, Implementation of Real-time Multiple Reflection and Fresnel Absorption of Laser Beam in Keyhole, J. Phys. D. Appl. Phys., 2006, 39, p 5372. https://doi.org/10.1088/0022-3727/39/24/039

    Article  CAS  Google Scholar 

  23. L.J. Zhang, J.X. Zhang, A. Gumenyuk, M. Rethmeier, and S.J. Na, Numerical Simulation of Full Penetration Laser Welding of Thick Steel Plate with High Power High Brightness Laser, J. Mater. Process. Technol., 2014, 214, p 1710–1720. https://doi.org/10.1016/j.jmatprotec.2014.03.016

    Article  CAS  Google Scholar 

  24. C.X. Zhu, J. Cheon, X.H. Tang, S.J. Na, and H.C. Cui, Molten Pool Behaviors and their Influences on Welding Defects in Narrow Gap GMAW of 5083 Al-alloy, Int. J. Heat Mass Trans., 2018, 126, p 1206–1221. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.132

    Article  CAS  Google Scholar 

  25. B. Huang, X. Chen, S.Y. Pang, and R.Z. Hu, A Three-dimensional Model of Coupling Dynamics of Keyhole and Weld Pool During Electron Beam Welding, Int. J. Heat Mass Trans., 2017, 115, p 159–173. https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.010

    Article  CAS  Google Scholar 

  26. M. Luo, R.Z. Hu, T.T. Liu, B. Wu, and S.Y. Pang, Optimization Possibility of Beam Scanning for Electron Beam Welding: Physics Understanding and Parameters Selection Criteria, Int. J. Heat Mass Trans., 2018, 127, p 1313–1326

    Article  Google Scholar 

  27. Z. Yang, Y. Fang, and J. He, Numerical Simulation of Heat Transfer and Fluid Flow during Vacuum Electron Beam Welding of 2219 Aluminium Girth Joints, Vacuum, 2020, 175, p 109256. https://doi.org/10.1016/j.vacuum.2020.109256

    Article  CAS  Google Scholar 

  28. J.J. Pan, S.S. Hu, L.J. Yang, and D.P. Wang, Investigation of Molten Pool Behavior and Weld Bead Formation in VP-GTAW by Numerical Modelling, Mater. Des., 2016, 111, p 600–607. https://doi.org/10.1016/j.matdes.2016.09.022

    Article  CAS  Google Scholar 

  29. D.S. Wu, X.M. Hua, L. Fang, and L.J. Huang, Understanding of Spatter Formation in Fiber Laser Welding of 5083 Aluminum Alloy, Int. J. Heat Mass Trans., 2017, 113, p 730–740. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.125

    Article  CAS  Google Scholar 

  30. D.S. Wu, X.M. Hua, L.J. Huang, and J. Zhao, Numerical Simulation of Spatter Formation during Fiber Laser Welding of 5083 Aluminum Alloy at Full Penetration Condition, OPT. Laser Technol., 2018, 100, p 157–164. https://doi.org/10.1016/j.optlastec.2017.10.010

    Article  CAS  Google Scholar 

  31. L. Huang, X. Hua, D. Wu, and L. Fang, Experimental Investigation and Numerical Study on the Elimination of Porosity in Aluminum Alloy Laser Welding and Laser–GMA Welding, J. Mater. Eng. Perform., 2019, 28, p 1618–1627. https://doi.org/10.1007/s11665-019-03955-x

    Article  CAS  Google Scholar 

  32. G. Xu, L. Li, P. Li, Z. Zheng, Q. Hu, and B. Du, Modeling of Keyhole-Induced Pore Formation in Laser-Arc Hybrid Welding of Aluminum Alloy with a Horizontal Fillet Joint, J. Mater. Eng. Perform., 2019, 28, p 6555–6564. https://doi.org/10.1007/s11665-019-04393-5

    Article  CAS  Google Scholar 

  33. Y. Luo, J.H. Liu, and H. Ye, Bubble Flow and the Formation of Cavity Defect in Weld Pool of Vacuum Electron Beam Welding, Vacuum, 2011, 86, p 11–17. https://doi.org/10.1016/j.vacuum.2011.03.024

    Article  CAS  Google Scholar 

  34. Y. Luo, W. Wu, G.F. Wu, and H. Ye, Influence of Gravity State upon Bubble Flow in the Deep Penetration Molten Pool of Vacuum Electron Beam Welding, Vacuum, 2013, 89, p 26–34. https://doi.org/10.1016/j.vacuum.2012.08.008

    Article  CAS  Google Scholar 

  35. C.C. Liu and J.S. He, Numerical Analysis of Fluid Transport Phenomena and Spiking Defect Formation during Vacuum Electron Beam Welding of 2219 Aluminum Alloy Plate, Vacuum, 2016, 132, p 70–81. https://doi.org/10.1016/j.vacuum.2016.07.033

    Article  CAS  Google Scholar 

  36. X. Zhou, H. Zhang, G. Wang, and X. Bai, Three-dimensional Numerical Simulation of Arc and Metal Transport in Arc Welding Based Additive Manufacturing, Int. J. Heat Mass Trans., 2016, 103, p 521–537. https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.084

    Article  CAS  Google Scholar 

  37. D.N. Trushnikov, E.G. Koleva, G.M. Mladenov, and V.Y. Belenkiy, Effect of Beam Deflection Oscillations On the Weld Geometry, J. Mater. Process. Technol., 2013, 213, p 1623–1634. https://doi.org/10.1016/j.jmatprotec.2013.03.028

    Article  Google Scholar 

  38. M.F. Zäh and S. Lutzmann, Modelling and Simulation of Electron Beam Melting. Production Engineering, Prod. Eng. Res. Dev., 2010, 4(1), p 15–23. https://doi.org/10.1007/s11740-009-0197-6

    Article  Google Scholar 

  39. P. Sahoo, T. Debroy, and M. McNallan, Surface Tension of Binary Metal-surface Active Solute Systems under Conditions Relevent to Welding Metallurgy, Metall. Trans. B., 1988, 19, p 483–491

    Article  Google Scholar 

  40. J.Y. Lee, S.H. Ko, D.F. Farson, and C.D. Yoo, Mechanism of Keyhole Formation and Stability in Stationary Laser Welding, J. Phys. D. Appl. Phys., 2002, 35, p 1570–1576. https://doi.org/10.1088/0022-3727/35/13/320

    Article  CAS  Google Scholar 

  41. J. Elmer, Characterization of Defocused Electron Beams and Welds in Stainless Steel and Refractory Metals Using the Enhanced Modified Faraday Cup Diagnostic, Lawrence Livermore National Laboratory, 2009, p 1–9 https://doi.org/10.2172/947235

Download references

Acknowledgments

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziyou Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Fang, Y. & He, J. Numerical Investigation on Molten Pool Dynamics and Defect Formation in Electron Beam Welding of Aluminum Alloy. J. of Materi Eng and Perform 29, 6570–6580 (2020). https://doi.org/10.1007/s11665-020-05111-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05111-2

Keywords

Navigation