Skip to main content
Log in

Field Study of Weather Conditions Affecting Atmospheric Corrosion by an Automobile-Carried Atmospheric Corrosion Monitor Sensor

Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The atmospheric corrosion of iron and steels not only affects the safety of infrastructures but also destroys the appearances and ornamental appreciations. The corrosivity of an environment can suggest such information that is useful for corrosion protection design and maintenance. The classical exposure test method is applicable to the evaluation of atmospheric corrosivity, but it takes a long time and can’t tell the evolution of corrosivity over a period of time. Atmospheric corrosion monitor (ACM) has been proved to be an effective method to investigate the corrosivity of atmospheric environment. However, unfortunately, the experiences of the authors of this paper show that the output by measuring current is interfered by the noise when the sensor is dry, and it is often difficult to differentiate it from the background signals, while the corrosion process is still going on the sensor surface. In this paper, a Fe-Zn ACM sensor was modified by connecting a larger resistor in parallel and measuring the electromotive force. Laboratory experiments and field tests revealed the influence of temperature, RH and rainfall on the ACM outputs, verifying the applicability of the modified sensor for the monitoring of the corrosivity variations in a region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Y.K. Cai, Y. Zhao, X.B. Ma, K. Zhou, and H. Wang, Long-term Prediction of Atmospheric Corrosion Loss in Various Field Environments, Corrosion, 2018, 74(6), p 669

    CAS  Google Scholar 

  2. D.L. Li, G.Q. Fu, M.Y. Zhu, Q. Li, and C.X. Yin, Effect of Ni on the Corrosion Resistance of Bridge Steel in a Simulated Hot and Humid Coastal-Industrial Atmosphere, Int. J. Miner. Metall. Mater., 2018, 25(3), p 325

    CAS  Google Scholar 

  3. D.L. Li, G.Q. Fu, and M.Y. Zhu, Effect of Calcium on Atmospheric Corrosion Resistance of Bridge Steel, J. Electrochem., 2017, 23(6), p 724–731

    Google Scholar 

  4. A.N. Kallias, B. Imam, and M.K. Chryssanthopoulos, Performance Profiles of Metallic Bridges Subject to Coating Degradation and Atmospheric Corrosion, Struct. Infrastruct. Eng., 2017, 13(4), p 440

    Google Scholar 

  5. L.H. Gong, Q. Xing, and H.H. Wang, Corrosion Behaviors of Weathering Steel 09CuPCrNi Welded Joints in Simulated Marine Atmospheric Environment, Anti-Corros. Methods Mater., 2016, 63(4), p 295

    CAS  Google Scholar 

  6. V. Urban, V. Krivy, and K. Kreislova, Study of Corrosion Processes on Typical Surfaces of Weathering Steel Road Bridges, Mater. Res. Innov., 2015, 19(sup 10), p S10–305

    CAS  Google Scholar 

  7. B.R. Hou, The Cost of Corrosion in China, Science Press, Beijing, 2017

    Google Scholar 

  8. C. Lin, F.P. Wang, and X.G. Li, The Progress of Research Methods on Atmospheric Corrosion, J. Chin. Soc. Corros. Prot., 2004, 24(4), p 249

    CAS  Google Scholar 

  9. A.G. Ostroff, Translated by Wang XN 1988 Handbook of Corrosion Control, Petroleum Industry Press, Beijing, 1988

    Google Scholar 

  10. W.H. Ailor, Atmospheric Corrosion, Wiley, New York, 1982

    Google Scholar 

  11. G.R. Eadie and R.R.M. Johnston, Some Atmospheric Factors Determining Corrosivity in Molburne Area, in Proceedings of Australia Corrosion Conference, Melbourne, 1974, p 15

  12. R.J. Cordner, Atmospheric Corrosion Survey of New Zealand, Brit. Corros. J., 1990, 25(2), p 115

    CAS  Google Scholar 

  13. C.C. Hsien and C.C. Lin, in Proceedings of 5th ACCC, Melbourne, Australia, Nov. 23–27, 1987, vol 2, p 1–5

  14. Z.Y. Wang, G.C. Yu, and W. Han, A Survey of the Atmospheric Corrosiveness of Natural Environments in China, Corros. Prot., 2003, 24(8), p 323

    Google Scholar 

  15. C.X. Huang, W.T. Wu, C. Sun, G.U. Gao, J.X. Luo, and S.R. Liu, Atmospheric Corrosion Survey of Steels in Liaoning, J. Chin. Soc. Corros. Prot., 1993, 13(1), p 19

    CAS  Google Scholar 

  16. C. Sun, W.T. Wu, and C.X. Huang, Atmospheric Corrosion Investigation in Typical Areas of Liaoning, Tot. Corros. Control, 1998, 12(4), p 1

    Google Scholar 

  17. C. Sun, W.T. Wu, C.X. Huang, and X.Y. Zhou, Atmospheric Corrosion Investigation in Rural Areas of Liaoning, Tot. Corros. Control, 1999, 13(2), p 10

    Google Scholar 

  18. C. Sun, W.T. Wu, and C.X. Huang, Atmospheric Corrosion Investigation in Urban Polluted Areas of Liaoning, Tot. Corros. Control, 2000, 14(3), p 1

    Google Scholar 

  19. C. Sun, W.T. Wu, and C.X. Huang, Survey of Atmospheric Corrosion in Shenyang Area, Environ. Sci. Technol., 1998, 82, p 22

    Google Scholar 

  20. Z.Y. Wang, H.C. Chen, G.C. Yu, S.N. Ding, and F.Z. Liu, An Investigation on Atmospheric Corrosiveness in Hainan Province, J. Chin. Soc. Corros. Prot., 1996, 16(3), p 225

    CAS  Google Scholar 

  21. I.S. Cole, W.Y. Chan, G.S. Trindad, and D.A. Paterson, Holistic Model for Atmospheric Corrosion Part 4—Geographic Information System for Predicting Airborne Salinity, Corros. Eng. Sci. Technol., 2004, 39(1), p 89

    CAS  Google Scholar 

  22. S. Feliu, M. Morcillo, and B. Chico, Effect of Distance from Sea on Atmospheric Corrosion Rate, Corrosion, 1999, 55(9), p 883

    CAS  Google Scholar 

  23. F.P. Wang, X.Y. Zhang, and Y.L. Du, The Review of Atmospheric Corrosion Research, Corros. Sci. Prot. Technol., 2000, 2, p 104

    Google Scholar 

  24. Z.H. Sun, J.G. Li, and M.Z. Li, Future of Accelerated Atmospheric Corrosion Testing of Metal Materials, J. Mater. Eng., 1995, 12, p 41

    Google Scholar 

  25. S.W. Dean, Planning, Instrumentation, and Evaluation of Atmospheric Corrosion Tests. IV, Mater. Perform., 1989, 28(1), p 52

    Google Scholar 

  26. C.W. Yan, C.N. Cao, and H.C. Lin, Application of Quartz Crystal Microbalance in Atmospheric Corrosion Investigation, J. Chin. Soc. Corros. Prot., 2001, 21(2), p 123

    CAS  Google Scholar 

  27. I. Kage and S. Fujita, In-situ Corrosion Monitoring of Steel Flamed House by Using ACM Sensors with a Fe–Ag Galvanic Couple, in Proc. 4th Int. Conf. Zinc and Zinc Coated Steel Sheet, Tokyo, 1998, p 394

  28. D. Mizuno, S. Suzuki, S. Fujita, and N. Hara, Corrosion Monitoring and Materials Selection for Automotive Environments by Using Atmospheric Corrosion Monitor (ACM) Sensor, Corros. Sci., 2014, 83, p 217

    CAS  Google Scholar 

  29. T. Tatsuoka, T. Matsunaga, Y. Takagi, S. Motoda, and S. Tsujikawa, Evaluation of Atmospheric Corrosivity by ACM (Atmospheric Corrosion Monitor) Type Corrosion Sensor, in 13th Asian-Pacific Corrosion Control Conference, Osaka, 2003, p 1

  30. D.H. Xia, S.Z. Song, Z.B. Qin, W.B. Hu, and Y. Behnamian, Review-Electrochemical Probes and Sensors Designed for Time-dependent Atmospheric Corrosion Monitoring: Fundamentals, Progress, and Challenges, J. Electrochem. Soc., 2019, 167(3), p 037513

    Google Scholar 

  31. D.H. Xia, S.Z. Song, Y. Behnamian, W.B. Hu, Y.F. Cheng, J.L. Luo, and F. Huet, Review-Electrochemical Noise Applied in Corrosion Science: Theoretical and Mathematical Models Towards Quantitative Analysis, J. Electrochem. Soc., 2020, 167(8), p 081507

    CAS  Google Scholar 

  32. C. Ma, S.Z. Song, Z.M. Gao, J.H. Wang, W.B. Hu, Y. Behnamian, and D.H. Xia, Electrochemical Noise Monitoring of the Atmospheric Corrosion of Steels: Identifying Corrosion Form Using Wavelet Analysis, Corros. Eng. Sci. Technol., 2017, 52(6), p 432–440

    CAS  Google Scholar 

  33. D.H. Xia, C. Ma, S.Z. Song, L.L. Ma, J.H. Wang, Z.M. Gao, C. Zhong, and W.B. Hu, Assessing Atmospheric Corrosion of Metals by a Novel Electrochemical Sensor Combining with a Thin Insulating Net Using Electrochemical Noise Technique, Sens. Actuators B, 2017, 252, p 353–358

    CAS  Google Scholar 

  34. D.H. Xia, C. Ma, S.Z. Song, and L.K. Xu, Detection of Atmospheric Corrosion of Aluminum Alloys by Electrochemical Probes: Theoretical Analysis and Experimental Tests, J. Electrochem. Soc., 2019, 166(12), p B1000–B1009

    CAS  Google Scholar 

  35. X.L. Cao, H.D. Deng, W. Lan, and P.J. Cao, Electrochemical Investigation on Atmospheric Corrosion of Carbon Steel Under Different Environmental Parameters, Anti-Corros. Methods Mater., 2013, 60(4), p 199

    CAS  Google Scholar 

  36. E. Schindelholz, R.G. Kelly, I.S. Cole, W.D. Ganther, and T.H. Muster, Comparability and Accuracy of Time of Wetness Sensing Methods Relevant for Atmospheric Corrosion, Corros. Sci., 2013, 67, p 233

    CAS  Google Scholar 

  37. F. Mansfeld and J.V. Kenkel, Electrochemical Monitoring of Atmospheric Corrosion Phenomena, Corros. Sci., 1976, 16(3), p 111

    CAS  Google Scholar 

  38. F. Mansfeld and S. Tsai, Laboratory Studies of Atmospheric Corrosion—I. Weight Loss and Electrochemical Measurements, Corros. Sci., 1980, 20(7), p 853

    CAS  Google Scholar 

  39. F. Mansfeld, Monitoring of Atmospheric Corrosion Phenomena with Electrochemical Sensors, J. Electrochem. Soc., 1988, 135(6), p 1354

    CAS  Google Scholar 

  40. S. Motoda, Y. Suzuki, T. Shinohara, Y. Kojima, S. Tsujikawa, W. Oshikawa, S. Itomura, T. Fukushima, and S. Izumo, ACM (Atmospheric Corrosion Monitor) Type Corrosion Sensor to Evaluate Corrosivity of Marine Atmosphere, Zairyo-to-Kankyo, 1994, 43(10), p 550

    CAS  Google Scholar 

  41. S. Motoda, Y. Suzuki, T. Shinohara, S. Tsujikawa, W. Oshikawa, S. Itomura, T. Fukushima, and S. Izu, Corrosive Factors of a Marine Atmosphere Analyzed by ACM Sensor for 1 Year, Zairyo-to-Kankyo, 1995, 44(4), p 218

    Google Scholar 

  42. S. Motoda, Y. Suzuki, T. Shinohara, and S. Tsujikawa, Corrosivity of Indoor Atmosphere for a Prefabricated House, Zairyo-to-Kankyo, 1998, 47(10), p 651

    CAS  Google Scholar 

  43. N. Fuse, A. Naganuma, T. Fukuchi, J. Tani, and Y. Hori, Methodology to Improve Corrosion Rate Estimation Based on Atmospheric Corrosion Monitoring Sensors, Corrosion, 2017, 73(2), p 199

    CAS  Google Scholar 

  44. X.M. Wang, X.G. Li, and X.L. Tian, Influence of Temperature and Relative Humidity on the Atmospheric Corrosion of Zinc in Field Exposures and Laboratory Environments by Atmospheric Corrosion Monitor, Int. J. Electrochem. Sci., 2015, 10(10), p 8361

    CAS  Google Scholar 

  45. X.M. Wang, X.G. Li, X.L. Tian, and K. Guo, Effect of Processing Factors and Ambient Conditions on Phytic Acid Conversion Coating on Zinc by Atmospheric Corrosion Monitor Sensor, Int. J. Electrochem. Sci., 2015, 10, p 10821

    CAS  Google Scholar 

  46. S. Ootsuka, S. Fujita, E. Tada, A. Nishikata, and T. Tsuru, Evaluation of Hydrogen Absorption into Steel in Automobile Moving Environments, Corros. Sci., 2015, 98, p 430

    CAS  Google Scholar 

  47. L. Greenspan, Humidity Fixed Points of Binary Saturated Aqueous Solutions, J. Res. Natl. Bur. Stand., 1977, 81(1), p 89

    Google Scholar 

  48. ISO 8407:1991, Corrosion of Metals and Alloys–Removal of Corrosion Products from Corrosion Test Specimens

  49. B. Yang, J.Y. Li, and L. Wen, Impact Factor Weight Analysis of Atmospheric Corrosion Rate of Carbon Steel Based on MIV, J. Beijing Univ. Aeronaut. Astronaut., 2018, 44(8), p 1620

    Google Scholar 

  50. X.M. Wang, P. Wang, Y.C. Sun, and B.J. Lian, Corrosion Resistance of Q235 Steel in Simulated Marine Atmospheric Environment, Surf. Technol., 2015, 44(11), p 104

    Google Scholar 

  51. E. Del Angel, R. Vera, and F. Corvo, Atmospheric Corrosion of Galvanised Steel in Different Environments in Chile and Mexico, Int. J. Electrochem. Sci., 2015, 10, p 7985

    Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support of the Key R&D Program of Shandong, P. R. China (Grant Number 2017GSF217010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-liang Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Yl., Yang, D., Xu, Y. et al. Field Study of Weather Conditions Affecting Atmospheric Corrosion by an Automobile-Carried Atmospheric Corrosion Monitor Sensor. J. of Materi Eng and Perform 29, 5840–5853 (2020). https://doi.org/10.1007/s11665-020-05107-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05107-y

Keywords

Navigation