Skip to main content
Log in

Tower-Like ZnO Nanorod Bundles Grown on Freestanding Diamond Wafers for Electron Field Emission Improvement

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Tower-like ZnO nanorod (ZNR) bundles were grown on freestanding diamond (FSD) wafers by a low-temperature hydrothermal method without any catalysts, and the corresponding electron field emission property was investigated. The structural characterizations disclosed that these tower-like bundles were composed of single crystalline ZNRs with hexagonal wurtzite structure. They grew perpendicularly to each crystal planes of the diamond grains. Different hydrothermal reaction times (e.g., 1.5, 3, 6, 8 h) were carried out to investigate the morphology features of ZNRs grown on the growth surface of FSD wafers. The ZNR bundles with a growth time of 6 h showed the highest crystallinity and aspect ratio. Such ZNR bundles/FSD hybrid exhibited a high emission current density of 0.2 mA at an applied field of 11.8 V/μm and a reduced turn-on field of 6.8 V/μm. The field enhancement factor β was calculated to be ~4979 based on the Fowler-Nordheim theory. The geometry and structure of polycrystalline diamond were responsible for the formation of ZNR bundles and the high β-value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Chen, Enhanced Field Emission of Well-Aligned ZnO Nanowire Arrays Illuminated by UV, Chem. Phys. Lett., 2010, 490, p 176–179

    Article  CAS  Google Scholar 

  2. C.J. Lee, T.J. Lee, S.C. Lyu, Y. Zhang, H. Ruh, and H.J. Lee, Field Emission from Well-Aligned Zinc Oxide Nanowires Grown at Low Temperature, Appl. Phys. Lett., 2002, 81, p 3648–3650

    Article  CAS  Google Scholar 

  3. L. Liao, J.C. Li, D.F. Wang, C. Liu, and Q. Fu, Electron Field Emission Studies on ZnO Nanowires, Mater. Lett., 2005, 59, p 2465–2467

    Article  CAS  Google Scholar 

  4. S.T. Lee, Z. Lin, and X. Jiang, CVD Diamond Films: Nucleation and Growth, Mater. Sci. Eng., 1999, 25, p 123–154

    Article  Google Scholar 

  5. Q.F. Su, Y.B. Xia, L.J. Wang, J.M. Liu, and W.M. Shi, Influence of Texture on Optical and Electrical Properties of Diamond Films, Vacuum, 2007, 81, p 644–648

    Article  CAS  Google Scholar 

  6. A. Saravanan, B.R. Huang, J.C. Lin, G. Keiser, and I.N. Lin, Fast Photoresponse and Long Lifetime UV Photodetectors and Field Emitters Based on ZnO/Ultrananocrystalline Diamond Films, Chem. Eur. J., 2015, 21, p 16017–16026

    Article  CAS  Google Scholar 

  7. B.R. Huang, A. Saravanan, D. Kathiravan, R.H. Liou, and G. Keiser, Role of Conductive Nitrogen Incorporated Diamond Nanowires for Enhancing the UV Detection and Field Emission Properties of ZnO Nanotubes, Mater. Design., 2018, 154, p 130–139

    Article  CAS  Google Scholar 

  8. A. Saravanana, B.R. Huanga, J.P. Chub, A. Prasannanc, and H.C. Tsaic, Interface Engineering of Ultrananocrystalline Diamond/MoS2-ZnO Heterostructures and Its Highly Enhanced Hydrogen Gas Sensing Properties, Sensor. Actuat. B-Chem., 2019, 292, p 70–79

    Article  Google Scholar 

  9. H.Q. Yan, R.R. He, J. Pham, and P.D. Yang, Morphogenesis of One-Dimensional ZnO Nano and Microcrystals, Adv. Mater., 2003, 15(5), p 402–405

    Article  CAS  Google Scholar 

  10. E. Muchuweni, T.S. Sathiaraj, and H. Nyakotyo, Physical Properties of Gallium and Aluminium Co-doped Zinc Oxide Thin Films Deposited at Different Radio Frequency Magnetron Sputtering Power, Ceram. Int., 2016, 42, p 17706–17710

    Article  CAS  Google Scholar 

  11. Q.X. Zhang, Y.S. Zhang, K. Yu, and Z.Q. Zhu, Photoluminescence and Field-Emission Characteristics of ZnO Nanowires Synthesized by Two-Step Method, Vacuum, 2008, 82, p 30–34

    Article  Google Scholar 

  12. Y.Y. Lv, Z.Y. Zhang, J.F. Yan, J. Liu, J.N. Yun, C.X. Zhai, and W. Zhao, Photoluminescence and Growth Mechanism of Oriented Hierarchical Fibrous-Like ZnO Nanowires, J. Nanosci. Nanotechno., 2017, 17, p 656–660

    Article  CAS  Google Scholar 

  13. K. An, S.W. Yu, X.J. Li, Y.Y. Shen, B. Zhou, G.J. Zhang, and X.P. Liu, Microwave Plasma Reactor with Conical-Reflector for Diamond Deposition, Vacuum, 2015, 117, p 112–120

    Article  CAS  Google Scholar 

  14. Z. Zhang, Y. Lv, J. Yan, D. Hui, J. Yun, C. Zhai, and W. Zhao, Uniform ZnO Nanowire Arrays: Hydrothermal Synthesis, Formation Mechanism and Field Emission Performance, J. Alloy. Compd., 2015, 650, p 374–380

    Article  CAS  Google Scholar 

  15. Q. Yu and T.T. Ai, Fabrication and Characterization of Au-Doped ZnO Nanocandles Synthesized on Diamond Film, Mater. Lett., 2015, 152, p 142–144

    Article  CAS  Google Scholar 

  16. Y.H. Yang, C.X. Wang, B. Wang, N.S. Xu, and G.W. Yang, ZnO Nanowire and Amorphous Diamond Nanocomposites and Field Emission Enhancement, Chem. Phys. Lett., 2005, 403, p 248–251

    Article  CAS  Google Scholar 

  17. H.F. Pang and L.G. Gancedo, Characterization of the Surface Acoustic Wave Devices Based on ZnO/Nanocrystalline Diamond Structures, Phys. Status Solidi (a), 2013, 210, p 1575–1583

    Article  CAS  Google Scholar 

  18. Q. Li, K.W. Kwong, D. Ozkaya, and D.J.H. Cockayne, Self-Assembled Periodical Polycrystalline-ZnO/a-C Nanolayers on Zn Nanowire, Phys. Rev. Lett., 2004, 92, p 186102

    Article  Google Scholar 

  19. M.S.S. Mousavi, F. Kolahdouz, M. Soleimanzadeh, R. Norouzi, M. Norouzib, and Z.K. Esfahanic, Modification of Green Synthesized ZnO Nanorods for Actuation Application, J. Alloys Compd., 2015, 650, p 936–943

    Article  Google Scholar 

  20. Y.Z. Yang, C.X. Wang, H.D. Li, and Q. Lin, Ultrahydrophobicity of ZnO Modified CVD Diamond Films, Appl. Surf. Sci., 2013, 270, p 260–266

    Article  CAS  Google Scholar 

  21. B.R. Huang, S. Jou, Y.M. Wu, K.H. Chen, and L.C. Chen, Electrical Properties of Annealed MPCVD Grown Vertically Aligned Carbon Nanotube Films, Diam. Relat. Mater., 2010, 19, p 445–448

    Article  CAS  Google Scholar 

  22. A. Umar, C. Ribeiro, A. Al-Hajry, Y. Masuda, and Y.B. Hahn, Growth of Highly c-Axis-Oriented ZnO Nanorods on ZnO/Glass Substrate: Growth Mechanism, Structural, and Optical Properties, J. Phys. Chem. C, 2009, 113, p 14715–14720

    Article  CAS  Google Scholar 

  23. C.J. Tang, A.J.S. Fernandes, F. Costa, and J.L. Pinto, Effect of Microwave Power and Nitrogen Addition on the Formation of 100 Faceted Diamond from Microcrystalline to Nanocrystalline, Vacuum, 2011, 85, p 1130

    Article  CAS  Google Scholar 

  24. J. Swiatowska, V. Lair, C. Pereira-Nabais, G. Cote, P. Marcus, and A. Chagnes, XPS, XRD and SEM Characterization of a Thin Ceria Layer Deposited Onto Graphite Electrode for Application in Lithium-Ion Batteries, Appl. Surf. Sci., 2011, 257, p 9110–9119

    Article  CAS  Google Scholar 

  25. R.S. Balmer, J.R. Brandon, S.L. Clewes, H.K. Dhillon, J.M. Dodson, I. Friel, P.N. Inglis, T.D. Madgwick, M.L. Markham, T.P. Mollart, N. Perkins, G.A. Scarsbrook, D.J. Twitchen, A.J. Whitehead, J.J. Wilman, and S.M. Woollard, Chemical Vapour Deposition Synthetic Diamond: Materials, Technology and Application, J. Phys.: Condens. Matter, 2009, 21, p 364221

    CAS  Google Scholar 

  26. M. Rajalakshmi, A.K. Arora, B.S. Bendre, and S. Mahamuni, Optical Phonon Confinement in Zinc Oxide Nanoparticles, J. Appl. Phys., 2000, 87, p 2445–2448

    Article  CAS  Google Scholar 

  27. J.J. Wu and S.C. Liu, Catalyst-Free Growth and Characterization of ZnO Nanorods, J. Phys. Chem. B, 2002, 106, p 9546–9551

    Article  CAS  Google Scholar 

  28. A. Umar and Y.B. Hahn, Aligned Hexagonal Coaxial-Shaped ZnO Nanocolumns on Steel Alloy by Thermal Evaporation, Appl. Phys. Lett., 2006, 88, p 173120

    Article  Google Scholar 

  29. Z.H. Ibupoto, K. Khun, M. Eriksson, M. Salhi, M. Atif, A. Ansari, and M. Willander, Hydrothermal Growth of Vertically Aligned ZnO Nanorods Using a Biocomposite Seed Layer of ZnO Nanoparticles, Materials, 2013, 6, p 3584–3597

    Article  CAS  Google Scholar 

  30. F. Fabbri, M. Villani, A. Catellani, A. Calzolari, G. Cicero, D. Calestani, G. Calestani, A. Zappettini, B. Dierre, T. Sekiguchi, and G. Salviati, Zn Vacancy Induced Green Luminescence on Non-polar Surfaces in ZnO Nanostructures, Sci. Rep-UK, 2015, 4, p 5158

    Article  Google Scholar 

  31. Y. Luo and C.M. Breeding, Fluorescence Produced by Optical Defects in Diamond: Measurement, Characterization, and Challenges, Gems. Gemol., 2013, 49, p 82–97

    Article  CAS  Google Scholar 

  32. K.G. Saw, S.S. Tneh, F.K. Yam, S.S. Ng, and Z. Hassan, Ultraviolet Photoresponse Properties of Zinc Oxide on Type IIb Diamond Heterojunction, Phys. B, 2010, 405, p 4123

    Article  CAS  Google Scholar 

  33. J.C. Lin, B.R. Huang, and T.C. Lin, Bilayer Structure of ZnO Nanorod/Nanodiamond Film Based Ultraviolet Photodetectors, J. Electrochem. Soc., 2013, 160, p H509–H512

    Article  CAS  Google Scholar 

  34. R.H. Fowler and L. Nordheim, Electron Emission in Intense Electric Fields, Royal Society of London. Series A, 1928, 119, p 173–181

    CAS  Google Scholar 

  35. J.S. Suh, K.S. Jeong, J.S. Lee, and I. Han, Study of the Field-Screening Effect of Highly Ordered Carbon Nanotube Arrays, Appl. Phys. Lett., 2002, 80, p 2392

    Article  CAS  Google Scholar 

  36. J. Rouhi, M. Alimanesh, S. Mahmud, R.A. Dalvand, C.H. Raymond-Ooi, and M. Rusop, A Novel Method for Synthesis of Well-Aligned Hexagonal Cone-Shaped ZnO Nanostructuresin Field Emission Applications, Mater. Lett., 2014, 125, p 147–150

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by China Postdoctoral Science Foundation funded project (2018M640911), Science and Technology Major Project of Shanxi (Grant No. 20181102013), “1331 Project” Engineering Research Center of Shanxi (Grant No. PT201801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huarong Gong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Gong, Y., Yu, S. et al. Tower-Like ZnO Nanorod Bundles Grown on Freestanding Diamond Wafers for Electron Field Emission Improvement. J. of Materi Eng and Perform 29, 6078–6084 (2020). https://doi.org/10.1007/s11665-020-05059-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05059-3

Keywords

Navigation