Skip to main content
Log in

Modern Dielectric Materials for Output Windows of High-Power Microwave and Terahertz Sources

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Analysis of dielectric properties of several materials, BN, AlN with BN additive, crystalline quartz, MgAl2O4 spinel, 6H-SiC in the millimeter and submillimeter (terahertz) ranges, is presented. Basing on the experimentally measured dielectric losses of these materials and on their thermal and mechanical properties, we made a calculation to estimate the maximal achievable output power that can be transmitted through disks made of such materials. Prospects for using these materials for gyrotron barrier window production are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. V.V. Parshin, Int. J. Infrared Millim. Waves. 15(2), 339-348 (1994)

    Article  Google Scholar 

  2. E.V. Koposova, S.E. Myasnikova, V.V. Parshin, S.N. Vlasov, Diam. Relat. Mater. 11, 1485–1490 (2002).

    Article  Google Scholar 

  3. J.R. Brandon, S.E. Coe, R.S. Sussmann, K. Sakamoto, R. Sporl, R. Heidinger, S. Hanks, Fusion Eng. Des. 53, 553–559 (2001).

    Article  Google Scholar 

  4. V.V. Parshin, M.Yu. Tretyakov, M.A. Koshelev, and E.A. Serov, IEEE Sens. J., 13(1), 18-23 (2013).

    Article  Google Scholar 

  5. G.G. Denisov, A.G. Litvak, V.E. Myasnikov, E.M. Tai, V.E. Zapevalov, Nucl. Fusion, 48, 415–419 (2008).

    Article  Google Scholar 

  6. S. Schreck, G. Aiello, A. Meier, D. Strauss, R. Ikeda,Y. Oda, K. Sakamoto, K. Takahashi, T. Scherer, Fusion Eng. Des., 96–97, 593-596 (2015)

    Article  Google Scholar 

  7. V. Parshin, E. Serov, G. Denisov, B. Garin, R. Denisyuk, V. V'yuginov, V. Klevtsov, N. Travin, Diam. Relat. Mater., 80, 1-4 (2017)

    Article  Google Scholar 

  8. Q. Zheng, Ch. Li, A. Rai, J.H. Leach, D.A. Broido, and D.G. Cahill. Phys. Rev. Mater., 3, 01460 (2019).

    Google Scholar 

  9. S.V. Egorov, Yu.V. Bykov, A.G. Eremeev A.A. Sorokin, E.A. Serov, V.V. Parshin, S.S. Balabanov, A.V. Belyaev, A.V. Novikova, D.A. Permin, Radiophys. Quant. Electron., 59 (8–9), 690–697 (2017).

    Article  Google Scholar 

  10. V.V. Parshin, E.A. Serov, A.P. Kotkov, A.G. Kuzmichev, V.A. Rassadovskiy, Proc. 29th Int. Conf. «Microwave & Telecommunication Technology» (CriMiCo’2019), Sevastopol, September 8-14, 2019, No 5a.5 (in Russian).

  11. V.V. Parshin, M.Yu. Tretyakov, M.A. Koshelev, E.A. Serov, Radiophys. Quant. Electron., 52(8), 525–535 (2009).

    Article  Google Scholar 

  12. Specification of pyrolytic boron nitride: https://www.shinetsu.co.jp/en/products/electronics-and-functional-materials-business/pyrolytic-boron-nitride-pbn/. Accessed 15 Sep 2020.

  13. E.K. Sichel, R.E. Miller, M.S. Abrahams, C.J. Buiocchi, Phys. Rev. B., 13(10), 4607–4611 (1976).

    Article  Google Scholar 

  14. L. Duclaux, B. Nysten, J-P. Issi, Phys. Rev. B., 46(6), 3362–3367 (1992).

    Article  Google Scholar 

  15. B. Yates, M.J. Overy, O. Pirgon, Philos. Magazine., 32(4), 847–857 (1975), https://doi.org/10.1080/14786437508221624.

    Article  Google Scholar 

  16. S.V. Egorov, A.A. Sorokin, I.E. Ilyakov, B.V. Shishkin, E.A. Serov, V.V. Parshin, K.I. Rybakov, S.S. Balabanov, A.V. Belyaev, J. Infrared Millim. Terahertz Waves, 40(4), 447–455 (2019).

    Article  Google Scholar 

  17. D.C. Harris, L.F. Johnson, R. Seaver, T. Lewis G. Turri, M. Bass, D.E. Zelmon, D.N. Haynes, Opt. Eng. 52(8), 087113 (2013).

    Article  Google Scholar 

  18. J. Kimberley, K.T. Ramesh, Scr. Mater. (2011) https://doi.org/10.1016/j.scriptamat.2011.07.044

  19. K. V. Vlasova, A. N. Konovalov, A. I. Makarov, N. F. Andreev, I. E. Kozhevatov, D. E. Silin, Radiophys. Quant. Electron. 62, 439–446 (2019).

    Article  Google Scholar 

  20. H. Kanamori, N. Fujii, H. Mizutani, J. Geophys. Res., 73(2), 595–605 (1968)

    Google Scholar 

  21. Ballato A. Basic Material Quartz and Related Innovations. In: Piezoelectricity. Springer Series in Materials Science, V. 114 (Springer, Berlin, Heidelberg, 2008).

    Book  Google Scholar 

  22. J. Kimberley, K.T. Ramesh, O. Barnouin, J. Geophys. Res.: Solid Earth. 115(B8), B08207 (2010).

    Google Scholar 

  23. V.V. Parshin, E.A. Serov, E.E. Chigryai, B.M. Garin, R.N. Denisiuk, D.S. Kalyonov, M. Ding, L. Li, Y. Lu, Y. Yang, Y. Liang, J. Feng, and P.V. Ershova, Journal of radio electronics (Zhurnal Radioelektroniki), No 2 (2018) http://jre.cplire.ru/jre/feb18/10/text.pdf. Accessed 15 Sep 2020.

  24. Specification of Aluminum Nitride Ceramic: http://www.goodfellowusa.com/A/Aluminum-Nitride-Machinable-Ceramic.html. Accessed 15 Sep 2020.

  25. K. Kamitani, M. Grimsditch, J.C. Nipko, C.-K. Loong, M. Okada, I. Kimura, J. Appl. Phys. 82(6), 3152-3154 (1997).

    Google Scholar 

  26. Z. Li and R. C. Bradt, J. Am. Ceram. Soc. 69(12), 863 (1986).

    Article  Google Scholar 

  27. Composite Materials Handbook-MIL 17, Volume III: Materials Usage, Design, and Analysis (Us Dept Of Defense, 1999)

  28. M. Born E. Wolf, Principles of Optics, Chapter 1, p.62 (Pergamon Press, 1980)

  29. S.P. Timoshenko, J.N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1951) 493 pp.

    MATH  Google Scholar 

  30. J.F. Nye, Physical Properties of Crystals Their Representation by Tensors and Matrices. (Oxford University Press, Oxford, 1985).

    MATH  Google Scholar 

  31. È. K. Maldutis, Yu. L. Reksnis, S. V. Sakalauskas, Sov. J. Quant. Electron. 5(11), 1358–1361 (1975).

    Article  Google Scholar 

  32. M.P. Shaskolskaya, Fundamentals of Crystal Physics (Mir Publ., Moscow, 1982).

    Google Scholar 

  33. R. Heidinger, M. Rohde, R. Spörl, Fusion Eng. Des. 56–57, 471–476 (2001)

    Article  Google Scholar 

Download references

Funding

This work was partially supported by Russian Foundation for Basic Research and the Government of the Nizhny Novgorod region (project No. 18-42-520015). The preparation of the samples was supported by the IAP RAS state assignment 0035-2019-0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Serov.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serov, E.A., Parshin, V.V., Vlasova, K.V. et al. Modern Dielectric Materials for Output Windows of High-Power Microwave and Terahertz Sources. J Infrared Milli Terahz Waves 41, 1450–1459 (2020). https://doi.org/10.1007/s10762-020-00745-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-020-00745-8

Keywords

Navigation