Skip to main content
Log in

Modelling and simulation of carrier transport in quantum dot memory device for longer data retention and minimized power consumption

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The performance of a group III–V material quantum dot (QD) nanostructure memory is investigated using a self-consistent Schrödinger solver, eight-band k·p model, and carrier dynamics modelling. This model is used to explore the information loss due to the carrier emission rate in the QDs as a function of temperature, size and confinement potential. The results reveal the dominant emission mechanisms that should occur at different operating temperatures. To minimize the loss and improve the performance at room temperature, our findings reveal an increase in the carrier storage time and a reduction in the power dissipation with increasing dot size. It is further illustrated that electrons are advantageous as information carriers over holes and that the inclusion of high-bandgap barrier layers favours longer-duration data retention. The model is extended to include trap states in realistic QDs, whose effect is found to become more prominent with performance optimization. The computed results are in close agreement with other experimental data for different QDs along with barrier layer. This validates the efficacy of the model, which can be utilized as a design tool for fabricating nanoscale memories with better data retention capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Fu, L., Lever, P., Sears, K., Tan, H.H., Jagadish, C.: In0.5Ga0.5As/GaAs quantum dot infrared photodetectors grown by metal-organic chemical vapor deposition. IEEE Electron. Device Lett. 26(9), 628–630 (2005)

    Google Scholar 

  2. Barve, A., Krishna, S.: Quantum dot infrared photodetectors. Semicond. Semimet. 84, 153–193 (2011)

    Google Scholar 

  3. Fiore, A., Markus, A.: Differential gain and gain compression in quantum-dot lasers. IEEE J. Quant. Electron. 43(4), 287–294 (2007)

    Google Scholar 

  4. Han, D.S., Asryan, L.V.: Tunneling-injection of electrons and holes into quantum dots: a tool for high-power lasing. Appl. Phys. Lett. 92, 251113 (2008)

    Google Scholar 

  5. Sanvicens, N., Pascual, N., Argüelles, M.T.F., Adrián, J., Fernández, J.M.C., Baeza, F.S., Medel, A.S., Marco, M.P.: Quantum dot-based array for sensitive detection of Escherichia coli. Anal. Bioanal. Chem. 399(8), 2755–2762 (2011)

    Google Scholar 

  6. Bharathi, M.V., Ghosh, K., Paira, P.: Glycerol–water mediated centrifuge controlled green synthesis of oleic acid capped PbS quantum dots for live cell imaging. RSC Adv. 7, 40664–40668 (2017)

    Google Scholar 

  7. Bharathi, M.V., Maiti, S., Sarkar, B., Ghosh, K., Paira, P.: Water-mediated green synthesis of PbS quantumdot and its glutathione and biotin conjugates for non-invasive live cell imaging. R. Soc. Open Sci. 5, 171614 (2017)

    Google Scholar 

  8. Cui, K., Ma, W., Zhang, Y., Huang, J., Wei, Y., Cao, Y., Guo, X., Li, Q.: 540-meV hole activation energy for GaSb/GaAs quantum dot memory structure using AlGaAs barrier. IEEE Electron Device Lett. 34(6), 759–761 (2013)

    Google Scholar 

  9. Marent, A., Nowozin, T., Gelze, J., Luckert, F., Bimberg, D.: Hole-based memory operation in an InAs/GaAs quantum dot heterostructure. Appl. Phys. Lett. 95(24), 242114 (2009)

    Google Scholar 

  10. Bonato, L., Sala, E.M., Stracke, G., Nowozin, T., Strittmatter, A., Ajour, M.N., Daqrouq, K., Bimberg, D.: 230 s Room-temperature storage time and 1.14 eV hole localization energy in In0.5Ga0.5As quantum dots on a GaAs interlayer in GaP with an AlP barrier. Appl. Phys. Lett. 106(4), 042102 (2015)

    Google Scholar 

  11. Geller, M., Marent, A., Nowozin, T., Feise, D., Potschke, K., Akcay, N., Oncan, N., Bimberg, D.: Towards an universal memory based on self-organized quantum dots. Physica E 40, 1811–1814 (2008)

    Google Scholar 

  12. Nowozin, T., Bimberg, D., Daqrouq, K., Ajour, M.N., Awedh, M.: Materials for future quantum dot-based memories. J. Nanomater. 2013, 1–6 (2013)

    Google Scholar 

  13. Marent, A., Geller, M., Bimberg, D.: A novel nonvolatile memory based on self-organized quantum dots. Microelectronics 40(3), 492–495 (2009)

    Google Scholar 

  14. Wang, X., Xie, W.: Xu JB: Graphene based non-volatile memory devices. Adv. Mater. 26, 5496–5503 (2014). https://doi.org/10.1002/adma.201306041

    Article  Google Scholar 

  15. Hong, A.J., Song, E.B., Yu, H.S., Allen, M.J., Kim, J., Fowler, J.D., Wassei, J.K., Park, Y., Wang, Y., Zou, J., Kaner, R.B., Weiller, B.H., Wang, K.L.: Graphene flash memory. ACS Nano 5(10), 7812–7817 (2011)

    Google Scholar 

  16. Gunlycke, D., Areshkin, D.A., Li, J., Mintmire, J.W., White, C.T.: Graphene nanostrip digital memory device. Nano Lett. 7(12), 3608–3611 (2007)

    Google Scholar 

  17. Geller, M., Marent, A., Nowozin, T., Bimberg, D., Akcay, N., Ӧnkan, N.: A write time of 6ns for quantum dot–based memory structures. Appl. Phys. Lett. 92(9), 092108 (2008)

    Google Scholar 

  18. Marent, A., Geller, M., Schliwa, A., Feise, D., Pötschke, K., Bimberg, D., Akçay, N., Öncan, N.: 106 years extrapolated hole storage time in GaSb/AlAs quantum dots. Appl. Phys. Lett. 91(24), 242109 (2007)

    Google Scholar 

  19. Bimberg, D., Geller, M., Marent, A.: Memory cell, and method for storing data. US Patent 7,948,822 B2 (2011)

  20. Marent, A., Nowozin, T., Geller, M., Bimberg, D.: The QD-flash: a quantum dot-based memory device. Semicond. Sci. Technol. 26, 014026 (2011)

    Google Scholar 

  21. Nowozin, T., Bonato, L., Högner, A., Wiengarten, A., Bimberg, D., Lin, W.H., Lin, S.Y., Reyner, C.J., Liang, B.L., Huffaker, D.L.: 800 meV Localization energy in GaSb/GaAs/Al0.3Ga0.7As quantum dots. Appl. Phys. Lett. 102(5), 052115 (2013)

    Google Scholar 

  22. Datta, S.: Lessons from nanoelectronics: a new perspective on transport. World Scientific, Singapore (2012)

    MATH  Google Scholar 

  23. Datta, S.: Nanoscale device modeling: the Green’s function method. Superlatt. Microstruct. 28(4), 253–278 (2000)

    Google Scholar 

  24. Ren, Z., Venugopal, R., Goasguen, S., Datta, S.: Lundstrom MS: NanoMOS 2.5: a two-dimensional simulator for quantum transport in double-gate MOSFETs. IEEE Trans. Electron. Devices 50(90), 1914–1925 (2003)

    Google Scholar 

  25. Geller, M.: Investigation of Carrier Dynamics in Self-organized Quantum Dots for Memory Devices. Ph.D. Thesis (2007)

  26. Kim R., Lundstrom M.: Notes on Fermi-Dirac integrals. https://arxiv.org/abs/0811.0116 (2008)

  27. Kruszewski, P., Dobaczewski, L., Markevich, V.P., Mitchell, C., Missous, M., Peaker, A.R.: Hole-related electrical activity of InAs/GaAs quantum dots. Acta Phys. Polonica A : Proc. XXXVII Int. School Semicond. Compd. 114(5), 1201–1206 (2008)

    Google Scholar 

  28. Fry, P.W., Finley, J.J., Wilson, L.R., Lemaître, A., Mowbray, D.J., Skolnick, M.S., Hopkinson, M., Hill, G., Clark, J.C.: Electric-field-dependent carrier capture and escape in self-assembled InAs/GaAs quantum dots. Appl. Phys. Lett. 77(26), 4344 (2000)

    Google Scholar 

  29. Thriveni, G., Ghosh, K.: Theoretical analysis and optimization of high k dielectric layers for designing high-performance and lower power dissipation nanoscale double gate MOSFETs. J. Comput. Electron. 18, 924–940 (2019)

    Google Scholar 

  30. Thriveni, G., Ghosh, K.: Performance analysis of nanoscale double gate strained silicon MOSFET with high k dielectric layers. Mater. Res. Express 6, 085062 (2019)

    Google Scholar 

  31. Ghosh, K., Naresh, Y.: Reddy NS: Theoretical optimization of multi-layer InAs/GaAs quantum dots subject to post-growth thermal annealing for tailoring the photoluminescence emission beyond 1.3 µm. J. Appl. Phys. 112(2), 024315 (2012)

    Google Scholar 

  32. Ghosh, K., Kundu, S., Halder, N., Srujan, M., Sengupta, S., Chakrabarti, S.: Annealing of In0.45Ga0.55As/GaAs quantum dots overgrown with large monolayer (11 ML) coverage for applications in thermally stable optoelectronic devices. Solid State Commun. 151(19), 1394–1399 (2011)

    Google Scholar 

  33. Srujan, M., Ghosh, K., Sengupta, S., Chakrabarti, S.: Presentation and experimental validation of a model for the effect of thermal annealing on the photoluminescence of self-assembled InAs/GaAs quantum dots. J. Appl. Phys. 107(12), 123107 (2010)

    Google Scholar 

  34. Sengupta, S., Shah, S.Y., Ghosh, K., Halder, N., Chakrabarti, S.: Investigation of the effect of larger monolayer coverage in the active layer of bilayer InAs/GaAs quantum-dot structure and effects of post-growth annealing. Appl. Phys. A Mater. Sci. Process. 103(1), 245–250 (2010)

    Google Scholar 

  35. Bruls, D.M., Vugs, J.W.A.M., Koenraad, P.M., Salemink, H.W.M., Wolter, J.H., Hopkinson, M., Skolnick, M.S., Long, F., Gill, S.P.A.: Determination of the shape and indium distribution of low-growth-rate InAs quantum dots by cross-sectional scanning tunneling microscopy. Appl. Phys. Lett. 81(9), 1708 (2002)

    Google Scholar 

  36. Shin, H., Kim, J.B., Yoo, J.H., Lee, W., Yoon, E., Yu, Y.M.: Enhanced strain of InAs quantum dots by an InGaAs ternary layer in a GaAs matrix. J. Appl. Phys. 99(2), 023521 (2006)

    Google Scholar 

  37. Yeoh, T.S., Liu, C.P., Swint, R.B., Hubar, A.E., Roh, S.D., Woo, C.Y., Lee, K.E., Coleman, J.J.: Epitaxy of InAs quantum dots on self-organized two-dimensional InAs islands by atmospheric pressure metalorganic chemical vapor deposition. Appl. Phys. Lett. 79(2), 221 (2001)

    Google Scholar 

  38. Trevisi, G., Seravalli, L., Frigeri, P., Prezioso, M., Rimada, J.C., Gombia, E., Mosca, R., Nasi, L., Bocchi, C., Franchi, S.: The effects of quantum dot coverage in InAs/(In)GaAs nanostructures for long wavelength emission. Microelectron. J. 40(3), 465–468 (2009)

    Google Scholar 

  39. Frigeri, P., Nasi, L., Prezioso, M., Seravalli, L., Trevisi, G., Gombia, E., Mosca, R., Germini, F., Bocchi, C., Franchi, S.: Effects of the quantum dot ripening in high-coverage InAs∕GaAs nanostructures. J. Appl. Phys. 102(8), 083506 (2007)

    Google Scholar 

  40. Geller, M., Kapteyn, C., Müller-Kirsch, L., Heitz, R., Bimberg, D.: Hole storage in GaSb/GaAs quantum dots for memory devices. Phys. Stat. Sol. B 238(2), 258–261 (2003)

    Google Scholar 

  41. Kim, Y.S., Marsman, M., Kresse, G., Tran, F., Blaha, P.: Towards efficient band structure and effective mass calculations for III–V direct band-gap semiconductors. Phys. Rev. B. 82, 205212 (2010)

    Google Scholar 

  42. Vurgaftman, I., Meyer, J.R., Ram-Mohan, L.R.: Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89(11), 5815 (2001)

    Google Scholar 

  43. Adachi, S.: Properties of aluminium gallium arsenide. Inspec, London (1993)

    Google Scholar 

  44. Streetman, B.G.: Solid State Electronic Devices, 4th edn, p. 439. Prentice Hall, Upper Saddle River (1999)

    Google Scholar 

  45. Stier, O., Grundmann, M., Bimberg, D.: Electronic and optical properties of strained quantum dots modeled by 8-band k⋅p theory. Phys. Rev. B. 59, 5688 (1999)

    Google Scholar 

  46. Pryor, C.: Eight-band calculations of strained InAs/GaAs quantum dots compared with one-, four-, and six-band approximations. Phys. Rev. B. 57, 7190 (1998)

    Google Scholar 

  47. Priester, C., Lannoo, M.: Analog of the k-p theory for a localized-orbital description of the band structure of zinc-blende-structure semiconductors. Phys. Rev. B 44(19), 10559 (1991)

    Google Scholar 

  48. Schulz, S., Schumacher, S., Czycholl, G.: Tight-binding model for semiconductor quantum dots with a wurtzite crystal structure: from one-particle properties to Coulomb correlations and optical spectra. Phys. Rev. B 73, 245327 (2006)

    Google Scholar 

  49. Santoprete, R., Koiller, B., Capaz, R.B., Kratzer, P., Liu, Q.K.K., Scheffler, M.: Tight-binding study of the influence of the strain on the electronic properties of InAs/GaAs quantum dots. Phys. Rev. B 68, 235311 (2003)

    Google Scholar 

  50. Engström, O., Landsberg, P.T., Fu, Y.: Statistics of electron emission from InAs/GaAs quantum dots. Mater. Sci. Eng. C 26(5–7), 739–744 (2006)

    Google Scholar 

  51. Bhattacharya, P.: Semiconductor Optoelectronic Devices, 2nd edn, p. 33. Prentice Hall of India, Upper Saddle River (2003)

    Google Scholar 

  52. Wadehra, A., Nicklas, J.W., Wilkins, J.W.: Band offsets of semiconductor heterostructures: a hybrid density functional study. Appl. Phys. Lett. 97(9), 092119 (2010)

    Google Scholar 

  53. Richard, S., Aniel, F., Fishman, G.: Energy-band structure of Ge, Si, and GaAs: A thirty-band k·p method. Phys. Rev. B. 71, 169901 (2005)

    Google Scholar 

  54. Lang, D.V.: Deep level transient spectroscopy: a new method to characterize traps in semiconductors. J. Appl. Phys. 45(7), 3023 (1979)

    Google Scholar 

  55. Mitonneau, A., Mircia, A., Martin, G.M., Pons, D.: Electrons and hole capture cross-sections at deep centers in gallium arsenide. Rev De Phys Appl 14, 853 (1979)

    Google Scholar 

  56. Ghosh, K., Mani, V.N., Dhar, S.: Numerical study and experimental investigation of zone refining in ultra-high purification of gallium and its use in the growth of GaAs epitaxial layers. J. Cryst. Growth 311, 1521–1528 (2009)

    Google Scholar 

  57. Adhikary, S., Halder, N., Chakrabarti, S., Majumdar, S., Ray, S.K., Herrera, M., Bonds, M., Browning, N.D.: Investigation of strain in self-assembled multilayer InAs/GaAs quantum dot heterostructures. J. Cryst. Growth 312, 724–729 (2010)

    Google Scholar 

Download references

Acknowledgements

We acknowledge the management of Vellore Institute of Technology Chennai for providing financial support through seed funding. V.D. again acknowledges the management of Vellore Institute of Technology Chennai for providing his fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaustab Ghosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damodaran, V., Choudhury, K. & Ghosh, K. Modelling and simulation of carrier transport in quantum dot memory device for longer data retention and minimized power consumption. J Comput Electron 20, 178–194 (2021). https://doi.org/10.1007/s10825-020-01577-4

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01577-4

Keywords

Navigation