Skip to main content

Advertisement

Log in

Temperatures above thermal optimum reduce cell growth and silica production while increasing cell volume and protein content in the diatom Thalassiosira pseudonana

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Temperature plays a fundamental role in determining phytoplankton community structure, distribution, and abundance. With climate models predicting increases in ocean surface temperatures of up to 3.2°C by 2100, there is a genuine need to acquire data on the phenotypic plasticity, and thus performance, of phytoplankton in relation to temperature. We investigated the effects of temperature (14–28°C) on the growth, morphology, productivity, silicification and macromolecular composition of the marine diatom Thalassiosira pseudonana. Optimum growth rate and maximum P:R ratio were obtained around 21°C. Cell volume and chlorophyll a increased with temperature, as did lipids and proteins. One of the strongest temperature-induced shifts was the higher silicification rates at low temperature. Our results reveal temperature-driven responses in physiological, morphological and biochemical traits in T. pseudonana; whereby at supra-optimal temperatures cells grew slower, were larger, had higher chlorophyll and protein content but reduced silicification, while those exposed to sub-optimal temperatures were smaller, heavily silicified with lower lipid and chlorophyll content. If these conserved across species, our findings indicate that as oceans warm, we may see shifts in diatom phenotypes and community structure, with potential biogeochemical consequences of higher remineralisation and declines in carbon and silicon export to the ocean interior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baker, K. G., C. M. Robinson, D. T. Radford, A. S. McInnes, C. Evenhuis & M. A. Doblin, 2016. Thermal performance curves of functional traits aid understanding of thermally induced changes in diatom-mediated biogeochemical fluxes. Frontiers in Marine Science. https://doi.org/10.3389/fmars.2016.00044.

    Article  Google Scholar 

  • Bambery, K. R., B. R. Wood & D. McNaughton, 2012. Resonant Mie scattering (RMieS) correction applied to FTIR images of biological tissue samples. Analyst 137(1): 126–132.

    CAS  PubMed  Google Scholar 

  • Barton, A. D., A. J. Irwin, Z. V. Finkel & C. A. Stock, 2016. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. Proceedings of the National Academy of Sciences 113(11): 2964.

    CAS  Google Scholar 

  • Berges, J. A., D. E. Varela & P. J. Harrison, 2002. Effects of temperature on growth rate, cell composition and nitrogen metabolism in the marine diatom Thalassiosira pseudonana (Bacillariophyceae). Marine Ecology Progress Series 225: 139–146.

    Google Scholar 

  • Bhavya, P., B. K. Kim, N. Jo, K. Kim, J. J. Kang, J. H. Lee, D. Lee, J. H. Lee, H. Joo & S. H. Ahn, 2019. A review on the macromolecular compositions of phytoplankton and the implications for aquatic biogeochemistry. Ocean Science Journal 54(1): 1–14.

    CAS  Google Scholar 

  • Bopp, L., P. Monfray, O. Aumont, J. Dufresne, H. Le Treut, G. Madec, L. Terray & J. Orr, 2001. Potential impact of climate change on marine export production. Global Biogeochemical Cycles 15(1): 81–99.

    CAS  Google Scholar 

  • Boyd, P. W., T. A. Rynearson, E. A. Armstrong, F. Fu, K. Hayashi, Z. Hu, D. A. Hutchins, R. M. Kudela, E. Litchman, M. R. Mulholland, U. Passow, R. F. Strzepek, K. A. Whittaker, E. Yu & M. K. Thomas, 2013. Marine phytoplankton temperature versus growth responses from polar to tropical waters – outcome of a scientific community-wide study. PLOS ONE 8(5): e63091.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, M. R., 2002. Nutritional value and use of microalgae in aquaculture. Avances en Nutrición Acuicola.

  • Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage & G. B. West, 2004. Toward a metabolic theory of ecology. Ecology 85(7): 1771–1789.

    Google Scholar 

  • Burrows, M. T., D. S. Schoeman, A. J. Richardson, J. G. Molinos, A. Hoffmann, L. B. Buckley, P. J. Moore, C. J. Brown, J. F. Bruno, C. M. Duarte, B. S. Halpern, O. Hoegh-Guldberg, C. V. Kappel, W. Kiessling, M. I. O’Connor, J. M. Pandolfi, C. Parmesan, W. J. Sydeman, S. Ferrier, K. J. Williams & E. S. Poloczanska, 2014. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507(7493): 492–495.

    CAS  PubMed  Google Scholar 

  • Converti, A., A. A. Casazza, E. Y. Ortiz, P. Perego & M. Del Borghi, 2009. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification 48(6): 1146–1151.

    CAS  Google Scholar 

  • Darley, W. M. & B. Volcani, 1969. Role of silicon in diatom metabolism: a silicon requirement for deoxyribonucleic acid synthesis in the diatom Cylindrotheca fusiformis Reimann and Lewin. Experimental Cell Research 58(2–3): 334–342.

    CAS  PubMed  Google Scholar 

  • DeLong, J. P. & D. T. Hanson, 2011. Warming alters density dependence, energetic fluxes, and population size in a model algae. Ecological Complexity 8(4): 320–325.

    Google Scholar 

  • Edwards, M. & A. J. Richardson, 2004. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430(7002): 881–884.

    CAS  PubMed  Google Scholar 

  • Falkowski, P. G., R. T. Barber & V. Smetacek, 1998. Biogeochemical controls and feedbacks on ocean primary production. Science. https://doi.org/10.1126/science.281.5374.200.281(5374):200-206.

    Article  PubMed  Google Scholar 

  • Finkel, Z. V., A. J. Irwin & O. Schofield, 2004. Resource limitation alters the 3/4 size scaling of metabolic rates in phytoplankton. Marine Ecology Progress Series 273: 269–279.

    Google Scholar 

  • Finkel, Z. V., J. Beardall, K. J. Flynn, A. Quigg, T. A. V. Rees & J. A. Raven, 2009. Phytoplankton in a changing world: cell size and elemental stoichiometry. Journal of Plankton Research 32(1): 119–137.

    Google Scholar 

  • Finkel, Z., M. Follows & A. Irwin, 2016. Size-scaling of macromolecules and chemical energy content in the eukaryotic microalgae. Journal of Plankton Research 38(5): 1151–1162.

    CAS  Google Scholar 

  • Gao, K., E. W. Helbling, D. Hader & D. Hutchins, 2012. Responses of marine primary producers to interactions between ocean acidification, solar radiation, and warming. Marine Ecology Progress Series 470: 167–189.

    CAS  Google Scholar 

  • Gattuso, J.-P., A. Magnan, R. Billé, W. W. Cheung, E. L. Howes, F. Joos, D. Allemand, L. Bopp, S. R. Cooley & C. M. Eakin, 2015. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349(6243): 4722.

    Google Scholar 

  • Geider, R., 1987. Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton. The New Phytologist 106: 1–34.

    CAS  Google Scholar 

  • Giordano, M., M. Kansiz, P. Heraud, J. Beardall, B. Wood & D. McNaughton, 2001. Fourier transform infrared spectroscopy as a novel tool to investigate changes in intracellular macromolecular pools in the marine microalgal Chaetoceros muellerii (Bacillariophyceae). Journal of Phycology 37(2): 271–279.

    CAS  Google Scholar 

  • Giordano, M., J. Beardall & J. A. Raven, 2005. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annual Review of Plant Biology 56(1): 99–131.

    CAS  PubMed  Google Scholar 

  • Guillard, R. R. & J. H. Ryther, 1962. Studies of marine planktonic diatoms I. Cyclotella nana Hudstedt and Detonula confervacea Cleve. Canadian Journal of Microbiology 8: 229–239.

    CAS  PubMed  Google Scholar 

  • Hamm, C. E., R. Merkel, O. Springer, P. Jurkojc, C. Maier, K. Prechtel & V. Smetacek, 2003. Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421(6925): 841.

    CAS  PubMed  Google Scholar 

  • Huertas, I. E., M. Rouco, V. Lopez-Rodas & E. Costas, 2011. Warming will affect phytoplankton differently: evidence through a mechanistic approach. Proceedings of the Royal Society B: Biological Sciences 278(1724): 3534–3543.

    PubMed  Google Scholar 

  • Irwin, A. J., A. M. Nelles & Z. V. Finkel, 2012. Phytoplankton niches estimated from field data. Limnology and Oceanography 57(3): 787–797.

    Google Scholar 

  • Irwin, A. J., Z. V. Finkel, F. E. Müller-Karger & L. T. Ghinaglia, 2015. Phytoplankton adapt to changing ocean environments. Proceedings of the National Academy of Sciences 112(18): 5762–5766.

    CAS  Google Scholar 

  • Jeffrey, S. W. & G. F. Humphrey, 1975. New spectrophotometric equations for determining chlorophyll a, b, c1, and c2 in higher plants and natural phytoplankton. Biochem Physiol Pfl 165: 191–194.

    Google Scholar 

  • Jo, N., J. J. Kang, W. G. Park, B. R. Lee, M. S. Yun, J. H. Lee, S. M. Kim, D. Lee, H. Joo & J. H. Lee, 2017. Seasonal variation in the biochemical compositions of phytoplankton and zooplankton communities in the southwestern East/Japan Sea. Deep Sea Research Part II: Topical Studies in Oceanography 143: 82–90.

    CAS  Google Scholar 

  • Juneja, A., R. M. Ceballos & G. S. Murthy, 2013. Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6(9): 4607–4638.

    Google Scholar 

  • Kremer, C. T., M. K. Thomas & E. Litchman, 2017. Temperature-and size-scaling of phytoplankton population growth rates: reconciling the Eppley curve and the metabolic theory of ecology. Limnology and oceanography 62(4): 1658–1670.

    Google Scholar 

  • Laws, E. A., 1991. Photosynthetic quotients, new production and net community production in the open ocean. Deep Sea Research Part A Oceanographic Research Papers 38(1): 143–167.

    CAS  Google Scholar 

  • Leblanc, K. & D. A. Hutchins, 2005. New applications of a biogenic silica deposition fluorophore in the study of oceanic diatoms. Limnology and Oceanography: Methods 3(10):462–476.

  • Leblanc, K., J. Arístegui, E. Kopczynska, H. Marshall, J. Peloquin, S. Piontkovski, A. Poulton, B. Quéguiner, R. Schiebel & R. Shipe, 2012. A global diatom database–abundance, biovolume and biomass in the world ocean.

  • Li, W. K., W. Glen Harrison & E. J. Head, 2006. Coherent assembly of phytoplankton communities in diverse temperate ocean ecosystems. Proceedings of the Royal Society B: Biological Sciences 273(1596): 1953–1960.

    PubMed  Google Scholar 

  • Liang, Y., J. A. Koester, J. D. Liefer, A. J. Irwin & Z. V. Finkel, 2019. Molecular mechanisms of temperature acclimation and adaptation in marine diatoms. The ISME Journal 13(10): 2415–2425.

    PubMed  PubMed Central  Google Scholar 

  • Lindqvist, K. & R. Lignell, 1997. Intracellular partitioning of 14CO2 in phytoplankton during a growth season in the northern Baltic. Marine Ecology Progress Series 152: 41–50.

    CAS  Google Scholar 

  • Longhurst, A. R., 2010. Ecological Geography of the Sea. Elsevier, Amsterdam.

    Google Scholar 

  • Marañón, E., P. Cermeño, D. C. López-Sandoval, T. Rodríguez-Ramos, C. Sobrino, M. Huete-Ortega, J. M. Blanco & J. Rodríguez, 2013. Unimodal size scaling of phytoplankton growth and the size dependence of nutrient uptake and use. Ecology letters 16(3): 371–379.

    PubMed  Google Scholar 

  • Martin-Jezequel, V., M. Hildebrand & M. A. Brzezinski, 2000. Silicon metabolism in diatoms: implications for growth. Journal of Phycology 36(5): 821–840.

    CAS  Google Scholar 

  • Mathur, S., D. Agrawal & A. Jajoo, 2014. Photosynthesis: response to high temperature stress. Journal of Photochemistry and Photobiology B: Biology 137: 116–126.

    CAS  Google Scholar 

  • Meehl, G. A., T. F. Stocker, W. D. Collins, P. Friedlingstein, A. T. Gaye, J. M. Gregory, A. Kitoh, R. Knutti, J. M. Murphy & A. Noda, 2007. Global climate projections. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

  • Montagnes, D. J. S. & D. J. Franklin, 2001. Effect of temperature on diatom volume, growth rate, and carbon and nitrogen content: reconsidering some paradigms. Limnology and Oceanography 46(8): 2008–2018.

    CAS  Google Scholar 

  • Murdock, J. N. & D. L. Wetzel, 2009. FT-IR microspectroscopy enhances biological and ecological analysis of algae. Applied Spectroscopy Reviews 44(4): 335–361.

    CAS  Google Scholar 

  • Nelson, D. M., W. O. Smith, R. D. Muench, L. I. Gordon, C. W. Sullivan & D. M. Husby, 1989. Particulate matter and nutrient distributions in the ice-edge zone of the Weddell Sea: relationship to hydrography during late summer. Deep Sea Research Part A Oceanographic Research Papers 36(2): 191–209.

    CAS  Google Scholar 

  • Padfield, D., G. Yvon-Durocher, A. Buckling, S. Jennings & G. Yvon-Durocher, 2016. Rapid evolution of metabolic traits explains thermal adaptation in phytoplankton. Ecology Letters 19(2): 133–142.

    PubMed  Google Scholar 

  • Petrou, K., D. A. Nielsen & P. Heraud, 2018. Single-cell biomolecular analysis of coral algal symbionts reveals opposing metabolic responses to heat stress and expulsion. Frontiers in Marine Science. https://doi.org/10.3389/fmars.2018.00110.

    Article  Google Scholar 

  • Petrou, K., K. G. Baker, D. A. Nielsen, A. M. Hancock, K. G. Schulz & A. T. Davidson, 2019. Acidification diminishes diatom silica production in the Southern Ocean. Nature Climate Change 9(10): 781–796.

    CAS  Google Scholar 

  • R Development Core Team, 2018. R: A language and environment for statistical computing. In: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/. 2019.

  • Ras, M., J.-P. Steyer & O. Bernard, 2013. Temperature effect on microalgae: a crucial factor for outdoor production. Reviews in Environmental Science and Bio/Technology 12(2): 153–164.

    CAS  Google Scholar 

  • Raven, J. & A. Waite, 2004. The evolution of silicification in diatoms: inescapable sinking and sinking as escape? New phytologist 162(1): 45–61.

    Google Scholar 

  • Regaudie-de-Gioux, A. & C. M. Duarte, 2012. Temperature dependence of planktonic metabolism in the ocean. Global Biogeochemical Cycles. https://doi.org/10.1029/2010gb003907.

    Article  Google Scholar 

  • Renaud, S. M., L.-V. Thinh, G. Lambrinidis & D. L. Parry, 2002. Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211(1): 195–214.

    CAS  Google Scholar 

  • Ritchie, R., 2006. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynthesis Research 89(1): 27–41.

    CAS  PubMed  Google Scholar 

  • Sackett, O., L. Armand, J. Beardall, R. Hill, M. Doblin, C. Connelly, J. Howes, B. Stuart, P. Ralph & P. Heraud, 2014. Taxon-specific responses of Southern Ocean diatoms to Fe enrichment revealed by synchrotron radiation FTIR microspectroscopy. Biogeosciences 11(20): 5795–5808.

    Google Scholar 

  • Salvucci, M. E. & S. J. Crafts-Brandner, 2004a. Relationship between the heat tolerance of photosynthesis and the thermal stability of rubisco activase in plants from contrasting thermal environments. Plant Physiology 134(4): 1460.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salvucci, M. E. & S. J. Crafts-Brandner, 2004b. Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiologia plantarum 120(2): 179–186.

    CAS  PubMed  Google Scholar 

  • Sheehan, C. E., D. A. Nielsen & K. Petrou, 2020. Macromolecular composition, productivity and dimethylsulfoniopropionate in Antarctic pelagic and sympagic microalgal communities. Marine Ecology Progress Series 640: 45–61.

    CAS  Google Scholar 

  • Smetacek, V., 2000. The giant diatom dump. Nature 406:574. https://doi.org/10.1038/35020665.

  • Sommer, U., E. Charalampous, S. Genitsaris & M. Moustaka-Gouni, 2016. Benefits, costs and taxonomic distribution of marine phytoplankton body size. Journal of Plankton Research 39(3): 494–508.

    Google Scholar 

  • Stevens, A. & L. Ramirez-Lopez, 2013. An introduction to the prospectr package. In: R package Vignette R package version 013.

  • Strickland, J. & T. Parsons, 1968. Bull. Fish. Res. Bd Can. A practical handbook of seawater analysis (167):311.

  • Suzuki, Y. & M. Takahashi, 1995. Growth responses of several diatom species isolated from various environments to temperature. Journal of Phycology 31(6): 880–888.

    Google Scholar 

  • Taucher, J. & A. Oschlies, 2011. Can we predict the direction of marine primary production change under global warming. Geophysical Research Letters 38: 2.

    Google Scholar 

  • Thompson, P. A., M. X. Guo & P. J. Harrison, 1992. Effects of variation in temperature. I. On the biochemical composition of eight species of marine phytoplankton 1. Journal of Phycology 28(4): 481–488.

    CAS  Google Scholar 

  • Tobin, M. J., L. Puskar, R. L. Barber, E. C. Harvey, P. Heraud, B. R. Wood, K. R. Bambery, C. T. Dillon & K. L. Munro, 2010. FTIR spectroscopy of single live cells in aqueous media by synchrotron IR microscopy using microfabricated sample holders. Vibrational spectroscopy 53(1): 34–38.

    CAS  Google Scholar 

  • Tréguer, P. J. & C. L. De La Rocha, 2013. The world ocean silica cycle. Annual review of marine science 5: 477–501.

    PubMed  Google Scholar 

  • Treguer, P., D. M. Nelson, A. J. Van Bennekom, D. J. DeMaster, A. Leynaert & B. Queguiner, 1995. The silica balance in the world ocean: a reestimate. Science 268(5209): 375–379.

    CAS  PubMed  Google Scholar 

  • Tréguer, P., C. Bowler, B. Moriceau, S. Dutkiewicz, M. Gehlen, O. Aumont, L. Bittner, R. Dugdale, Z. Finkel & D. Iudicone, 2018. Influence of diatom diversity on the ocean biological carbon pump. Nature Geoscience 11(1): 27.

    Google Scholar 

  • Twining, B. S., S. B. Baines, S. Vogt & M. D. Jonge, 2008. Exploring ocean biogeochemistry by single-cell microprobe analysis of protist elemental composition 1. Journal of Eukaryotic Microbiology 55(3): 151–162.

    PubMed  Google Scholar 

  • Ugwu, C. U. & H. Aoyagi, 2012. Microalgal culture systems: an insight into their designs, operation and applications. Biotechnology 11(3): 127.

    Google Scholar 

  • Van Donk, E., A. Ianora & M. Vos, 2011. Induced defences in marine and freshwater phytoplankton: a review. Hydrobiologia 668(1): 3–19.

    Google Scholar 

  • Vongsvivut, J., P. Heraud, W. Zhang, J. A. Kralovec, D. McNaughton & C. J. Barrow, 2012. Quantitative determination of fatty acid compositions in micro-encapsulated fish-oil supplements using Fourier transform infrared (FTIR) spectroscopy. Food Chemistry 135(2): 603–609.

    CAS  PubMed  Google Scholar 

  • Wagner, H., Z. Liu, U. Langner, K. Stehfest & C. Wilhelm, 2010. The use of FTIR spectroscopy to assess quantitative changes in the biochemical composition of microalgae. Journal of Biophotonics 3(8–9): 557–566.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Australian Synchrotron Beamline Scientists Drs Mark Tobin and Jitraporn Vongsvivut for technical support in synchrotron IR microspectroscopy data acquisition. Part of this work was funded by the Australian Synchrotron through merit based beamtime awarded on the Infrared Microscopy (IRM) beamline (Grant No. AS153/IRM/10005) awarded to KP. CES and KGB were supported by funding provided by the Climate Change Cluster and the School of Life Science at the University of Technology Sydney.

Author information

Authors and Affiliations

Authors

Contributions

KP designed the experiment; all authors conducted the experiment; sample and data collection CES, KGB, KP; formal data analysis and visualisation DAN; writing of first draft KP; all authors contributed to and approved the final draft of the manuscript.

Corresponding author

Correspondence to Katherina Petrou.

Additional information

Handling editor: Sofie Spatharis

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheehan, C.E., Baker, K.G., Nielsen, D.A. et al. Temperatures above thermal optimum reduce cell growth and silica production while increasing cell volume and protein content in the diatom Thalassiosira pseudonana. Hydrobiologia 847, 4233–4248 (2020). https://doi.org/10.1007/s10750-020-04408-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04408-6

Keywords

Navigation