Skip to main content
Log in

Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Favourable band alignment and excellent visible light response are vital for photochemical water splitting. In this work, we have theoretically investigated how ferroelectric polarization and its reversibility in direction can be utilized to modulate the band alignment and optical absorption properties. For this objective, 2D van der Waals heterostructures (HTSs) are constructed by interfacing monolayer MoS2 with ferroelectric In2Se3. We find the switch of polarization direction has dramatically changed the band alignment, thus facilitating different type of reactions. In In2Se3/MoS2/In2Se3 heterostructures, one polarization direction supports hydrogen evolution reaction and another polarization direction can favour oxygen evolution reaction. These can be used to create tuneable photocatalyst materials where water reduction reactions can be selectively controlled by polarization switching. The modulation of band alignment is attributed to the shift of reaction potential caused by spontaneous polarization. Additionally, the formed type-II van der Waals HTSs also significantly improve charge separation and enhance the optical absorption in the visible and infrared regions. Our results pave a way in the design of van der Waals HTSs for water splitting using ferroelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Coronado, A Historical Introduction to Photocatalysis, in: Design of Advanced Photocatalytic Materials for Energy and Environmental Applications, J. M. Coronado, F. Fresno, M. D. Hernández-Alonso, and R. Portela (Eds.), Springer London: London, 2013, pp 1–4

    Chapter  Google Scholar 

  2. C. F. Goodeve and J. A. Kitchener, The mechanism of photosensitisation by solids, Trans. Faraday Soc. 34(0), 902 (1938)

    Article  Google Scholar 

  3. A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238(5358), 37 (1972)

    Article  ADS  Google Scholar 

  4. D. Channei, B. Inceesungvorn, N. Wetchakun, S. Ukritnukun, A. Nattestad, J. Chen, and S. Phanichphant, Photocatalytic degradation of methyl orange by CeO2 and Fedoped CeO2 films under visible light irradiation, Sci. Rep. 4(1), 5757 (2014)

    Article  ADS  Google Scholar 

  5. F. F. Abdi, L. Han, A. H. M. Smets, M. Zeman, B. Dam, and R. van de Krol, Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode, Nat. Commun. 4(1), 2195 (2013)

    Article  ADS  Google Scholar 

  6. P. Dong, G. Hou, X. Xi, R. Shao, and F. Dong, WO3-based photocatalysts: Morphology control, activity enhancement and multifunctional applications, Environ. Sci. Nano 4(3), 539 (2017)

    Article  Google Scholar 

  7. M. Luo, Y. Liu, J. Hu, H. Liu, and J. Li, One-pot synthesis of CdS and Ni-doped CdS hollow spheres with enhanced photocatalytic activity and durability, ACS Appl. Mater. Interfaces 4(3), 1813 (2012)

    Article  Google Scholar 

  8. T. Kida, Y. Minami, G. Guan, M. Nagano, M. Akiyama, and A. Yoshida, Photocatalytic activity of gallium nitride for producing hydrogen from water under light irradiation, J. Mater. Sci. 41(11), 3527 (2006)

    Article  ADS  Google Scholar 

  9. A. Eftekhari, Tungsten dichalcogenides (WS2, WSe2, and WTe2): Materials chemistry and applications, J. Mater. Chem. A 5(35), 18299 (2017)

    Article  Google Scholar 

  10. P. Varadhan, H. C. Fu, Y. C. Kao, R. H. Horng, and J. H. He, An efficient and stable photoelectrochemical system with 9% solar-to-hydrogen conversion efficiency via InGaP/GaAs double junction, Nat. Commun. 10(1), 5282 (2019)

    Article  ADS  Google Scholar 

  11. L. Han, F. F. Abdi, R. van de Krol, R. Liu, Z. Huang, H. J. Lewerenz, B. Dam, M. Zeman, and A. H. M. Smets, Efficient water-splitting device based on a bismuth vanadate photoanode and thin-film silicon solar cells, Chem-SusChem 7(10), 2832 (2014)

    Google Scholar 

  12. Y. Li, Y. L. Li, C. M. Araujo, W. Luo, and R. Ahuja, Single-layer M0S2 as an efficient photocatalyst, Catal. Sci. Technol. 3(9), 2214 (2013)

    Article  Google Scholar 

  13. J. Mao, Y. Wang, Z. Zheng, and D. Deng, The rise of two-dimensional MoS2 for catalysis, Front. Phys. 13(4), 138118 (2018)

    Article  ADS  Google Scholar 

  14. Z. Ma, J. Zhuang, X. Zhang, and Z. Zhou, SiP monolayers: New 2D structures of group IV-V compounds for visible-light photohydrolytic catalysts, Front. Phys. 13(3), 138104 (2018)

    Article  ADS  Google Scholar 

  15. Y. Wang, M. Miao, J. Lv, L. Zhu, K. Yin, H. Liu, and Y. Ma, An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm, J. Chem. Phys. 137(22), 224108 (2012)

    Article  ADS  Google Scholar 

  16. H. L. Zhuang and R. G. Hennig, Single-layer group-III monochalcogenide photocatalysts for water splitting, Chem. Mater. 25(15), 3232 (2013)

    Article  Google Scholar 

  17. M. Qiao, J. Liu, Y. Wang, Y. Li, and Z. Chen, PdSeO3 monolayer: Promising inorganic 2D photocatalyst for direct overall water splitting without using sacrificial reagents and cocatalysts, J. Am. Chem. Soc. 140(38), 12256 (2018)

    Article  Google Scholar 

  18. P. Zhao, Y. Ma, X. Lv, M. Li, B. Huang, and Y. Dai, Two-dimensional III2-VI3 materials: Promising photocatalysts for overall water splitting under infrared light spectrum, Nano Energy 51, 533 (2018)

    Article  Google Scholar 

  19. R. M. Navarro Yerga, M. C. Álvarez Galván, F. del Valle, J. A. Villoria de la Mano, and J. L. G. Fierro, Water splitting on semiconductor catalysts under visible-light irradiation, ChemSusChem 2(6), 471 (2009)

    Article  Google Scholar 

  20. A. Kudo and Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev. 38(1), 253 (2009)

    Article  Google Scholar 

  21. M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production, Renew. Sustain. Energy Rev. 11(3), 401 (2007)

    Article  Google Scholar 

  22. A. Kakekhani and S. Ismail-Beigi, Ferroelectric-based catalysis: Switchable surface chemistry, ACS Catal. 5(8), 4537 (2015)

    Article  Google Scholar 

  23. X. Liu, Y. Wang, J. D. Burton, and E. Y. Tsymbal, Polarization-controlled Ohmic to Schottky transition at a metal/ferroelectric interface, Phys. Rev. B 88(16), 165139 (2013)

    Article  ADS  Google Scholar 

  24. D. Kim, H. Han, J. H. Lee, J. W. Choi, J. C. Grossman, H. M. Jang, and D. Kim, Electron hole separation in ferroelectric oxides for efficient photovoltaic responses, Proc. Natl. Acad. Sci. USA 115(26), 6566 (2018)

    Article  ADS  Google Scholar 

  25. D. Wijethunge, C. Tang, C. Zhang, L. Zhang, X. Mao, and A. Du, Bandstructure engineering in 2D materials using ferroelectric materials, Appl. Surf. Sci. 513, 145817 (2020)

    Article  Google Scholar 

  26. F. Liu, L. You, K. L. Seyler, X. Li, P. Yu, J. Lin, X. Wang, J. Zhou, H. Wang, H. He, S. T. Pantelides, W. Zhou, P. Sharma, X. Xu, P. M. Ajayan, J. Wang, and Z. Liu, Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes, Nat. Commun. 7(1), 12357 (2016)

    Article  ADS  Google Scholar 

  27. S. Yuan, X. Luo, H. L. Chan, C. Xiao, Y. Dai, M. Xie, and J. Hao, Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit, Nat. Commun. 10(1), 1775 (2019)

    Article  ADS  Google Scholar 

  28. A. Chandrasekaran, A. Mishra, and A. K. Singh, Ferroelectricity, antiferroelectricity, and ultrathin 2D electron/hole gas in multifunctional monolayer MXene, Nano Lett. 17(5), 3290 (2017)

    Article  ADS  Google Scholar 

  29. J. Low, J. Yu, M. Jaroniec, S. Wageh, and A. A. Al-Ghamdi, Heterojunction Photocatalysts 29(20), 1601694 (2017)

    Google Scholar 

  30. C. Cui, W. J. Hu, X. Yan, C. Addiego, W. Gao, Y. Wang, Z. Wang, L. Li, Y. Cheng, P. Li, X. Zhang, H. N. Alshareef, T. Wu, W. Zhu, X. Pan, and L. J. Li, Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3, Nano Lett. 18(2), 1253 (2018)

    Article  ADS  Google Scholar 

  31. W. Ding, J. Zhu, Z. Wang, Y. Gao, D. Xiao, Y. Gu, Z. Zhang, and W. Zhu, Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials, Nat. Commun. 8(1), 14956 (2017)

    Article  ADS  Google Scholar 

  32. Y. Jiang, Q. Wang, L. Han, X. Zhang, L. Jiang, Z. Wu, Y. Lai, D. Wang, and F. Liu, Construction of In2Se3/MoS2 heterojunction as photoanode toward efficient photoelectrochemical water splitting, Chem. Eng. J. 358, 752 (2019)

    Article  Google Scholar 

  33. J. R. Zhang, X. Z. Deng, B. Gao, L. Chen, C. T. Au, K. Li, S. F. Yin, and M. Q. Cai, Theoretical study on the intrinsic properties of In2Se3/MoS2 as a photocatalyst driven by near-infrared, visible and ultraviolet light, Catal. Sci. Technol. 9(17), 4659 (2019)

    Article  Google Scholar 

  34. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)

    Article  ADS  Google Scholar 

  35. H. Li, K. Yu, Z. Tang, H. Fu, and Z. Zhu, High photo-catalytic performance of a type-II α-MoO3@MoS2 heterojunction: From theory to experiment, Phys. Chem. Chem. Phys. 18(20), 14074 (2016)

    Article  Google Scholar 

  36. Q. Li, N. Zhang, Y. Yang, G. Wang, and D. H. L. Ng, High efficiency photocatalysis for pollutant degradation with MoS2/C3N4 heterostructures, Langmuir 30(29), 8965 (2014)

    Article  Google Scholar 

  37. F. Li, C. Shi, D. Wang, G. Cui, P. Zhang, L. Lv, and L. Chen, Improved visible-light absorbance of monolayer MoS2 on AlN substrate and its angle-dependent electronic structures, Phys. Chem. Chem. Phys. 20(46), 29131 (2018)

    Article  Google Scholar 

  38. G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)

    Article  ADS  Google Scholar 

  39. G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)

    Article  ADS  Google Scholar 

  40. P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)

    Article  ADS  Google Scholar 

  41. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  42. J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functional based on a screened Coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)

    Article  ADS  Google Scholar 

  43. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 132(15), 154104 (2010)

    Article  ADS  Google Scholar 

  44. C. Ataca, M. Topsakal, E. Aktürk, and S. Ciraci, A comparative study of lattice dynamics of three- and two-dimensional M0S2, J. Phys. Chem. C 115(33), 16354 (2011)

    Article  Google Scholar 

  45. P. Joensen, R. F. Frindt, and S. R. Morrison, Single-layer MoS2, Mater. Res. Bull. 21(4), 457 (1986)

    Article  Google Scholar 

  46. Z. Xie, F. Yang, X. Xu, R. Lin, and L. M. Chen, Functionalization of α-In2Se3 monolayer via adsorption of small molecule for gas sensing, Front. Chem. 6, 430 (2018)

    Article  ADS  Google Scholar 

  47. A. Kuc, N. Zibouche, and T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2, Phys. Rev. B 83(24), 245213 (2011)

    Article  ADS  Google Scholar 

  48. S. Lebègue and O. Eriksson, Electronic structure of two-dimensional crystals from ab initio theory, Phys. Rev. B 79(11), 115409 (2009)

    Article  ADS  Google Scholar 

  49. C. Ataca and S. Ciraci, Functionalization of single-layer M0S2 honeycomb structures, J. Phys. Chem. C 115(27), 13303 (2011)

    Article  Google Scholar 

  50. K. Kośmider and J. Fernández-Rossier, Electronic properties of the MoS2-WS2 heterojunction, Phys. Rev. B 87(7), 075451 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We highly acknowledge Queensland University of Technology (QUT) and National Computational Infrastructure (NCI) Australia for providing high performance computing (HPC) facilities to undertake this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aijun Du.

Additional information

Special Topic: Heterojunction and Its Applications (Ed. Chenghua Sun).

arXiv: 2009.00961.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wijethunge, D., Zhang, L., Tang, C. et al. Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching. Front. Phys. 15, 63504 (2020). https://doi.org/10.1007/s11467-020-0987-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-020-0987-z

Keywords

Navigation