Skip to main content
Log in

Asymptotic Expansions for the Lagrangian Trajectories from Solutions of the Navier–Stokes Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Consider any Leray–Hopf weak solution of the three-dimensional Navier–Stokes equations for incompressible, viscous fluid flows. We prove that any Lagrangian trajectory associated with such a velocity field has an asymptotic expansion, as time tends to infinity, which describes its long-time behavior very precisely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Besse, N., Frisch, U.: A constructive approach to regularity of Lagrangian trajectories for incompressible Euler flow in a bounded domain. Commun. Math. Phys. 351(2), 689–707 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  2. Camliyurt, G., Kukavica, I.: On the Lagrangian and Eulerian analyticity for the Euler equations. Physica D 376(377), 121–130 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  3. Cao, D., Hoang, L.: Asymptotic expansions with exponential, power, and logarithmic functions for non-autonomous nonlinear differential equations. J. Evol. Equ. 1–45 (2020) (accepted). https://doi.org/10.1007/s00028-020-00622-w

  4. Cao, D., Hoang, L.: Asymptotic expansions in a general system of decaying functions for solutions of the Navier–Stokes equations. Ann. Mat. 3(199), 1023–1072 (2020)

    Article  MathSciNet  Google Scholar 

  5. Cao, D., Hoang, L.: Long-time asymptotic expansions for Navier–Stokes equations with power-decaying forces. Proc. R. Soc. Edinb. Sect. A Math. 150(2), 569–606 (2020)

    Article  MathSciNet  Google Scholar 

  6. Constantin, P., Foias, C.: Navier–Stokes equations. Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1988)

  7. Constantin, P., Kukavica, I., Vicol, V.: Contrast between Lagrangian and Eulerian analytic regularity properties of Euler equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(6), 1569–1588 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  8. Constantin, P., La, J.: Note on Lagrangian–Eulerian methods for uniqueness in hydrodynamic systems. Adv. Math. 345, 27–52 (2019)

    Article  MathSciNet  Google Scholar 

  9. Constantin, P., Vicol, V., Wu, J.: Analyticity of Lagrangian trajectories for well posed inviscid incompressible fluid models. Adv. Math. 285, 352–393 (2015)

    Article  MathSciNet  Google Scholar 

  10. Foias, C., Hoang, L., Olson, E., Ziane, M.: On the solutions to the normal form of the Navier–Stokes equations. Indiana Univ. Math. J. 55(2), 631–686 (2006)

    Article  MathSciNet  Google Scholar 

  11. Foias, C., Hoang, L., Olson, E., Ziane, M.: The normal form of the Navier–Stokes equations in suitable normed spaces. Ann. Inst. H. Poincaré Anal. Nonlinéaire 26(5), 1635–1673 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  12. Foias, C., Hoang, L., Saut, J.-C.: Asymptotic integration of Navier–Stokes equations with potential forces. II. An explicit Poincaré–Dulac normal form. J. Funct. Anal. 260(10), 3007–3035 (2011)

    MATH  Google Scholar 

  13. Foias, C., Hoang, L., Saut, J.-C.: Navier and Stokes meet Poincaré and Dulac. J. Appl. Anal. Comput. 8(3), 727–763 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Foias, C., Manley, O., Rosa, R., Temam, R.: Navier–Stokes equations and turbulence. In: Encyclopedia of Mathematics and its Applications, vol. 83. Cambridge University Press, Cambridge (2001)

  15. Foias, C., Saut, J.-C.: Asymptotic behavior, as \(t\rightarrow +\infty \), of solutions of Navier–Stokes equations and nonlinear spectral manifolds. Indiana Univ. Math. J. 33(3), 459–477 (1984)

    Article  MathSciNet  Google Scholar 

  16. Foias, C., Saut, J.-C.: On the smoothness of the nonlinear spectral manifolds associated to the Navier–Stokes equations. Indiana Univ. Math. J. 33(6), 911–926 (1984)

    Article  MathSciNet  Google Scholar 

  17. Foias, C., Saut, J.-C.: Linearization and normal form of the Navier–Stokes equations with potential forces. Ann. Inst. H. Poincaré Anal. Nonlinéaire 4(1), 1–47 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  18. Foias, C., Saut, J.-C.: Asymptotic integration of Navier–Stokes equations with potential forces. I. Indiana Univ. Math. J. 40(1), 305–320 (1991)

    Article  MathSciNet  Google Scholar 

  19. Hernandez, M.: Mechanisms of Lagrangian analyticity in fluids. Arch. Ration. Mech. Anal. 233(2), 513–598 (2019)

    Article  MathSciNet  Google Scholar 

  20. Hoang, L.T., Martinez, V.R.: Asymptotic expansion in Gevrey spaces for solutions of Navier–Stokes equations. Asymptot. Anal. 104(3–4), 167–190 (2017)

    Article  MathSciNet  Google Scholar 

  21. Hoang, L.T., Martinez, V.R.: Asymptotic expansion for solutions of the Navier–Stokes equations with non-potential body forces. J. Math. Anal. Appl. 462(1), 84–113 (2018)

    Article  MathSciNet  Google Scholar 

  22. Hoang, L.T., Titi, E.S.: Asymptotic expansions in time for rotating incompressible viscous fluids. Ann. l’Inst. Henri Poincaré Anal. Nonlinéaire (2020). https://doi.org/10.1016/j.anihpc.2020.06.005

    Article  Google Scholar 

  23. Lang, S.: Analysis I. Addison-Wesley, London (1968)

    MATH  Google Scholar 

  24. Ma, T., Wang, S.: Geometric theory of incompressible flows with applications to fluid dynamics. In: Mathematical Surveys and Monographs, vol. 119. American Mathematical Society, Providence (2005)

  25. Minea, G.: Investigation of the Foias–Saut normalization in the finite-dimensional case. J. Dyn. Differ. Equ. 10(1), 189–207 (1998)

    Article  MathSciNet  Google Scholar 

  26. Shi, Y.: A Foias-Saut type of expansion for dissipative wave equations. Commun. Partial Differ. Equ. 25(11–12), 2287–2331 (2000)

    Article  MathSciNet  Google Scholar 

  27. Sueur, F.: Smoothness of the trajectories of ideal fluid particles with Yudovich vorticities in a planar bounded domain. J. Differ. Equ. 251(12), 3421–3449 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  28. Temam, R.: Navier–Stokes equations and nonlinear functional analysis, volume 66 of CBMS-NSF Regional Conference Series in Applied Mathematics, 2nd ed. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1995)

  29. Temam, R.: Navier–Stokes equations. AMS Chelsea Publishing, Providence (2001). Theory and Numerical Analysis, Reprint of the 1984 edition

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luan Hoang.

Additional information

Communicated by A. Ionescu

Dedicated to the memory of Ciprian Foias (1933–2020)

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoang, L. Asymptotic Expansions for the Lagrangian Trajectories from Solutions of the Navier–Stokes Equations. Commun. Math. Phys. 383, 981–995 (2021). https://doi.org/10.1007/s00220-020-03863-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03863-5

Navigation