Skip to main content
Log in

Low-Energy Spectrum of Toeplitz Operators with a Miniwell

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the concentration properties of low-energy states for quantum systems in the semiclassical limit, in the setting of Toeplitz operators, which include quantum spin systems as a large class of examples. We establish tools proper to Toeplitz quantization to give a general subprincipal criterion for localisation. In addition, we build up symplectic normal forms in two particular settings, including a generalisation of Helffer–Sjöstrand miniwells, in order to prove asymptotics for the ground state and estimates on the number of low-lying eigenvalues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Agmon, S.: Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigenfunctions of N-Body Schrödinger Operations: Number (MN-29). Princeton University Press, Princeton (2014)

    Google Scholar 

  2. Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform Part I. Commun. Pure Appl. Math. 14(3), 187–214 (1961)

    Article  MATH  Google Scholar 

  3. Berman, R., Berndtsson, B., Sjöstrand, J.: A direct approach to Bergman kernel asymptotics for positive line bundles. Arkiv för Matematik 46(2), 197–217 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bonnaillie-Noël, V., Hérau, F., Raymond, N.: Magnetic WKB constructions. Arch. Ration. Mech. Anal. 221(2), 817–891 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boutet de Monvel, L., Sjöstrand, J.: Sur la singularité des noyaux de Bergman et de Szegö. Journées équations aux dérivées partielles 34–35, 123–164 (1975)

    Article  MATH  Google Scholar 

  6. Brummelhuis, R.: Exponential decay in the semi-classical limit for eigenfunctions of schrödinger operators with magnetic fields and potentials which degenerate at infinity. Commun. Par. Differ. Equ. 16(8–9), 1489–1502 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Charles, L.: Berezin–Toeplitz operators, a semi-classical approach. Commun. Math. Phys. 239(1–2), 1–28 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Charles, L.: Semi-classical properties of geometric quantization with metaplectic correction. Commun. Math. Phys. 270(2), 445–480 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Charles, L.: Quantization of compact symplectic manifolds. J. Geom. Anal. 26(4), 2664–2710 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chris, M.: Slow off-diagonal decay for Szegö kernels. In: Harmonic Analysis at Mount Holyoke: Proceedings of an AMS-IMS-SIAM Joint Summer Research Conference on Harmonic Analysis, June 25-July 5, 2001, Mount Holyoke College, South Hadley, MA, vol. 320, pp. 77. American Mathematical Soc. (2003)

  11. Chubukov, A.: Order from disorder in a Kagome antiferromagnet. Phys. Rev. Lett. 69(5), 832–835 (1992)

    Article  ADS  Google Scholar 

  12. de Boutet Monvel, L., Guillemin, V.: The Spectral Theory of Toeplitz Operators. Number 99 in Annals of Mathematics Studies. Princeton University Press, Princeton (1981)

    MATH  Google Scholar 

  13. Deleporte, A.: Low-energy spectrum of Toeplitz operators: the case of wells. J. Spect. Theory (accepted) (2016)

  14. Demailly, J.-P.: Holomorphic Morse inequalities. Several Complex Variables Complex Geom. 2, 93–114 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Douçot, B., Simon, P.: A semiclassical analysis of order from disorder. J. Phys. A Math. Gen. 31(28), 5855 (1998)

    Article  ADS  MATH  Google Scholar 

  16. Helffer, B., Kordyukov, Y., Raymond, N., Vũ Ngọc, S.: Magnetic wells in dimension three. Anal. PDE 9(7), 1575–1608 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Helffer, B., Kordyukov, Y.A.: Semiclassical analysis of Schrödinger operators with magnetic wells. Contemp. Math. 500, 105 (2009)

    Article  MATH  Google Scholar 

  18. Helffer, B., Mohamed, A.: Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells. J. Funct. Anal. 138(1), 40–81 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Helffer, B., Morame, A.: Magnetic bottles in connection with superconductivity. J. Funct. Anal. 185(2), 604–680 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Helffer, B., Nourrigat, J.: Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs. Prog. Math. 58 (1985)

  21. Helffer, B., Nourrigat, J.: Décroissance á l’infini des fonctions propres de l’opérateur de Schrödinger avec champ Électromagnétique polynomial. J. Anal. Math. 58(1), 263–275 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Helffer, B., Sjöstrand, J.: Multiple wells in the semi-classical limit I. Commun. Par. Differ. Equ. 9(4), 337–408 (1984)

    Article  MATH  Google Scholar 

  23. Helffer, B., Sjöstrand, J.: Puits multiples en limite semi-classique V : Étude des minipuits. Curr. Top. Par. Differ. Equ. 133–186 (1986)

  24. Hörmander, L.: The Analysis of Linear Partial Differential Operators III. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  25. Kostant, B.: Quantization and unitary representations. In: Lectures in Modern Analysis and Applications III, pp. 87–208. Springer (1970)

  26. Lecheminant, P., Bernu, B., Lhuillier, C., Pierre, L., Sindzingre, P.: Order versus disorder in the quantum Heisenberg antiferromagnet on the Kagome lattice using exact spectra analysis. Phys. Rev. B 56(5), 2521–2529 (1997)

    Article  ADS  Google Scholar 

  27. Ma, X., Marinescu, G.: Holomorphic Morse Inequalities and Bergman Kernels, vol. 254. Springer, Berlin (2007)

    MATH  Google Scholar 

  28. Martinez, A.: Développements asymptotiques et effet tunnel dans l’approximation de Born-Oppenheimer. Annales de l’IHP Physique Théorique 50, 239–257 (1989)

    MATH  Google Scholar 

  29. Martinez, A.: Precise exponential estimates in adiabatic theory. J. Math. Phys. 35(8), 3889–3915 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Melin, A.: Lower bounds for pseudo-differential operators. Arkiv för Matematik 9(1), 117–140 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Misguich, G., Lhuillier, C.: Two-dimensional quantum antiferromagnets. In: Frustrated Spin Systems, pp. 235–319. World Scientific (2013)

  32. Morame, A., Truc, F.: Semiclassical eigenvalue asymptotics for a Schrödinger operator with a degenerate potential. Asym. Anal. 22(1), 39–49 (2000)

    MATH  Google Scholar 

  33. Morame, A., Truc, F.: Accuracy on eigenvalues for a Schrödinger operator with a degenerate potential in the semi-classical limit Cubo. Math. J. 9(2), 1–15 (2006)

    MATH  Google Scholar 

  34. Raymond, N., Võ Ngọc, S.: Geometry and spectrum in 2D magnetic wells. Annales de l’Institut Fourier 65, 137–169 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Reimers, J.N., Berlinsky, A.J.: Order by disorder in the classical Heisenberg kagome antiferromagnet. Phys. Rev. B 48(13), 9539–9554 (1993)

    Article  ADS  Google Scholar 

  36. Robert, D.: Comportment asymptotique des valeurs propres d’opérateurs de type Schrödinger a potentiel "dégénéré". J. Math. Pure Appl. 61, 275–300 (1982)

    Google Scholar 

  37. Shiffman, B., Zelditch, S.: Asymptotics of almost holomorphic sections on symplectic manifolds. J. Reine Angew. Math. 544, 181–222 (2002)

    MathSciNet  MATH  Google Scholar 

  38. Simon, B.: Some quantum operators with discrete spectrum but classically continuous spectrum. Ann. Phys. 146(1), 209–220 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Sobral, R.R., Lacroix, C.: Order by disorder in the pyrochlore antiferromagnets. Solid State Commun. 103(7), 407–409 (1997)

    Article  ADS  Google Scholar 

  40. Souriau, J.-M.: Quantification géométrique. Applications. In: Annales de l’institut Henri Poincaré (A) Physique Théorique, volume 6, pp. 311–341. Gauthier-villars (1967)

  41. Truc, F.: Semi-classical asymptotics for magnetic bottles. Asym. Anal. 15(3–4), 385–395 (1997)

    MathSciNet  MATH  Google Scholar 

  42. Truc, F.: Born-oppenheimer-type approximations for degenerate potentials: recent results and a survey on the area. In: Methods of Spectral Analysis in Mathematical Physics, pp. 403–413. Springer (2008)

  43. Villain, J., Bidaux, R., Carton, J.-P., Conte, R.: Order as an effect of disorder. J. Phys. 41(11), 1263–1272 (1980)

    Article  MathSciNet  Google Scholar 

  44. Woodhouse, N.M.J.: Geometric Quantization. Oxford University Press, Oxford (1997)

    MATH  Google Scholar 

  45. Zelditch, S.: Szegö kernels and a theorem of Tian. Int. Math. Res. Not. 6 (2000)

  46. Zworski, M.: Semiclassical Analysis, volume 138. American Mathematical Soc. (2012)

Download references

Acknowledgements

The authors thanks his thesis committee and B. Helffer for fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alix Deleporte.

Additional information

Communicated by J. Marklof

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by Grant ANR-13-BS01-0007-01.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deleporte, A. Low-Energy Spectrum of Toeplitz Operators with a Miniwell. Commun. Math. Phys. 378, 1587–1647 (2020). https://doi.org/10.1007/s00220-020-03791-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03791-4

Navigation