Skip to main content
Log in

Reversible solid-state phase transitions in confined two-layer colloidal crystals

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Using a combination of fluorescence and bright-field optical imaging, the solid-state packing structures of semi-confined two-layer spherical colloidal crystals were observed during modulation of an external AC electric field. Upon increasing field strength, the bottom layer of colloids (layer 1) transitioned from the entropically favored hexagonal packing structure with p6m symmetry to a square-packing structure with p4m symmetry. The packing structure of layer 2 was determined by the packing structure of layer 1, with layer 2 particles resting in, and moving in registry with, the low-energy interstitial sites of layer 1. Modulation of the field strength thus resulted in a reversible transition between a face-centered cubic crystal structure and a body-centered cubic crystal structure at low and high field strengths, respectively. These structures were found to be sensitive to the particle density in the wells, with vacancies and insertions leading to the formation of mixed crystal phases at high field strengths.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data transparency.

References

  1. Forsyth PA, Marčelia S, Mitchell DJ, Ninham BW (1978) Ordering in colloidal systems. Adv Colloid Interf Sci 9:37–60. https://doi.org/10.1016/0001-8686(87)80002-7

    Article  CAS  Google Scholar 

  2. Onsager L (1949) The effects of shape on the interaction of colloidal particles. Ann N Y Acad Sci 51:627–659. https://doi.org/10.1111/j.1749-6632.1949.tb27296.x

    Article  CAS  Google Scholar 

  3. Jiang P, McFarland MJ (2004) Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating. J Am Chem Soc 126:13778–13786. https://doi.org/10.1021/ja0470923

    Article  CAS  PubMed  Google Scholar 

  4. Lee SK, Yi GR, Moon JH, Yang SM, Pine DJ (2006) Pixellated photonic crystal films by selective photopolymerization. Adv Mater 18:2111–2116. https://doi.org/10.1002/adma.200502630

    Article  CAS  Google Scholar 

  5. Lee SY, Kim SH, Hwang H, Sim JY, Yang SM (2014) Controlled pixelation of inverse opaline structures towards reflection-mode displays. Adv Mater 26:2391–2397. https://doi.org/10.1002/adma.201304654

    Article  CAS  PubMed  Google Scholar 

  6. Rinne SA, García-Santamaría F, Braun PV (2008) Embedded cavities and waveguides in three-dimensional silicon photonic crystals. Nat Photonics 2:52–56. https://doi.org/10.1038/nphoton.2007.252

    Article  CAS  Google Scholar 

  7. Park SH, Qin D, Xia Y (1998) Crystallization of mesoscale particles over large areas. Adv Mater 10:1028–1032. https://doi.org/10.1002/(SICI)1521-4095(199809)10:13<1028::AID-ADMA1028>3.0.CO;2-P

    Article  CAS  Google Scholar 

  8. Velev OD, Jede TA, Lobo RF, Lenhoff AM (1998) Microstructured porous silica obtained via colloidal crystal templates. Chem Mater 10:3597–3602. https://doi.org/10.1021/cm980444i

    Article  CAS  Google Scholar 

  9. Dimitrov AS, Nagayama K (1996) Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces. Langmuir 12:1303–1311. https://doi.org/10.1021/la9502251

    Article  CAS  Google Scholar 

  10. Goldenberg LM, Wagner J, Stumpe J, Paulke BR, Görnitz E (2002) Ordered arrays of large latex particles organized by vertical deposition. Langmuir 18:3319–3323. https://doi.org/10.1021/la015659c

    Article  CAS  Google Scholar 

  11. Malaquin L, Kraus T, Schmid H, Delamarche E, Wolf H (2007) Controlled particle placement through convective and capillary assembly. Langmuir 23:11513–11521. https://doi.org/10.1021/la700852c

    Article  CAS  PubMed  Google Scholar 

  12. Prevo BG, Velev OD (2004) Controlled, rapid deposition of structured coatings from micro- and nanoparticle suspensions. Langmuir 20:2099–2107. https://doi.org/10.1021/la035295j

    Article  CAS  PubMed  Google Scholar 

  13. Chen KM, Jiang X, Kimerling LC, Hammond PT (2000) Selective self-organization of colloids on patterned polyelectrolyte templates. Langmuir 16:7825–7834. https://doi.org/10.1021/la000277c

    Article  CAS  Google Scholar 

  14. Zhang X, Zhang J, Zhu D, Li X, Zhang X, Wang T, Yang B (2010) A universal approach to fabricate ordered colloidal crystals arrays based on electrostatic self-assembly. Langmuir 26:17936–17942. https://doi.org/10.1021/la103778m

    Article  CAS  PubMed  Google Scholar 

  15. Vogel N, Retsch M, Fustin CA, del Campo A, Jonas U (2015) Advances in colloidal assembly: the design of structure and hierarchy in two and three dimensions. Chem Rev 115:6265–6311. https://doi.org/10.1021/cr400081d

    Article  CAS  PubMed  Google Scholar 

  16. Zhang J, Sun Z, Yang B (2009) Self-assembly of photonic crystals from polymer colloids. Curr Opin Colloid Interface Sci 14:103–114

    Article  Google Scholar 

  17. Jia Z, Sacanna S, Lee SS (2017) Dielectrophoretic assembly of dimpled colloids into open packing structures. Soft Matter 13:5724–5730. https://doi.org/10.1039/c7sm00874k

    Article  CAS  PubMed  Google Scholar 

  18. Jia Z, Kim JH, Yi GR, Lee SS (2018) Transition of dielectrophoresis-assembled 2D crystals to interlocking structures under a magnetic field. Langmuir 34:12412–12418. https://doi.org/10.1021/acs.langmuir.8b02706

    Article  CAS  PubMed  Google Scholar 

  19. Ma F, Wang S, Smith L, Wu N (2012) Two-dimensional assembly of symmetric colloidal dimers under electric fields. Adv Funct Mater 22:4334–4343. https://doi.org/10.1002/adfm.201200649

    Article  CAS  Google Scholar 

  20. Panczyk MM, Park JG, Wagner NJ, Furst EM (2013) Two-dimensional directed assembly of dicolloids. Langmuir 29:75–81. https://doi.org/10.1021/la303678f

    Article  CAS  PubMed  Google Scholar 

  21. Singh JP, Lele PP, Nettesheim F, Wagner NJ, Furst EM (2009) One- and two-dimensional assembly of colloidal ellipsoids in ac electric fields. Phys Rev E Stat Nonlin Soft Matter Phys 79:050401. https://doi.org/10.1103/PhysRevE.79.050401

    Article  CAS  PubMed  Google Scholar 

  22. Song P, Olmsted BK, Chaikin P, Ward MD (2013) Crystallization of micrometer-sized particles with molecular contours. Langmuir 29:13686–13693. https://doi.org/10.1021/la402325f

    Article  CAS  PubMed  Google Scholar 

  23. Song P, Wang Y, Wang Y, Hollingsworth AD, Weck M, Pine DJ, Ward MD (2015) Patchy particle packing under electric fields. J Am Chem Soc 137:3069–3075. https://doi.org/10.1021/ja5127903

    Article  CAS  PubMed  Google Scholar 

  24. Kong X, Shayan K, Lee S, Ribeiro C, Strauf S, Lee SS (2018) Remarkable long-term stability of nanoconfined metal-halide perovskite crystals against degradation and polymorph transitions. Nanoscale 10:8320–8328. https://doi.org/10.1039/c8nr01352g

    Article  CAS  PubMed  Google Scholar 

  25. Luo Y, Ahmadi ED, Shayan K, Ma Y, Mistry KS, Zhang C, Hone J, Blackburn JL, Strauf S (2017) Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities. Nat Commun 8:1413. https://doi.org/10.1038/s41467-017-01777-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McHale JM, Auroux A, Perrotta AJ, Navrotsky A (1997) Surface energies and thermodynamic phase stability in nanocrystalline aluminas. Science 277(80):788–789. https://doi.org/10.1126/science.277.5327.788

    Article  CAS  Google Scholar 

  27. Pan N (2014) Exploring the significance of structural hierarchy in material systems - a review. Appl Phys Rev 1:021302

    Article  Google Scholar 

  28. Sendner M, Nayak PK, Egger DA, Beck S, Müller C, Epding B, Kowalsky W, Kronik L, Snaith HJ, Pucci A, Lovrinčić R (2016) Optical phonons in methylammonium lead halide perovskites and implications for charge transport. Mater Horizons 3:613–620. https://doi.org/10.1039/c6mh00275g

    Article  CAS  Google Scholar 

  29. Shayan K, Rabut C, Kong X, Li X, Luo Y, Mistry KS, Blackburn JL, Lee SS, Strauf S (2018) Broadband light collection efficiency enhancement of carbon nanotube excitons coupled to metallo-dielectric antenna arrays. ACS Photonics 5:289–294. https://doi.org/10.1021/acsphotonics.7b00786

    Article  CAS  Google Scholar 

  30. Garcia-Adeva AJ (2006) Band gap atlas for photonic crystals having the symmetry of the kagomé and pyrochlore lattices. New J Phys 8:86–86. https://doi.org/10.1088/1367-2630/8/6/086

    Article  Google Scholar 

  31. Maldovan M, Ullal CK, Carter WC, Thomas EL (2003) Exploring for 3D photonic bandgap structures in the 11 f.c.c. space groups. Nat Mater 2:664–667. https://doi.org/10.1038/nmat979

    Article  CAS  PubMed  Google Scholar 

  32. Alert R, Casademunt J, Tierno P (2014) Landscape-inversion phase transition in dipolar colloids: tuning the structure and dynamics of 2D crystals. Phys Rev Lett 113:1–5. https://doi.org/10.1103/PhysRevLett.113.198301

    Article  CAS  Google Scholar 

  33. Gangwal S, Pawar A, Kretzschmar I, Velev OD (2010) Programmed assembly of metallodielectric patchy particles in external AC electric fields. Soft Matter 6:1413–1418. https://doi.org/10.1039/b925713f

    Article  CAS  Google Scholar 

  34. Ma F, Wang S, Wu DT, Wu N (2015) Electric-field–induced assembly and propulsion of chiral colloidal clusters. Proc Natl Acad Sci 112:6307–6312. https://doi.org/10.1073/pnas.1502141112

    Article  CAS  PubMed  Google Scholar 

  35. Mittal M, Lele PP, Kaler EW, Furst EM (2008) Polarization and interactions of colloidal particles in ac electric fields. J Chem Phys 129:064513. https://doi.org/10.1063/1.2969103

    Article  CAS  PubMed  Google Scholar 

  36. Wyatt Shields Iv C, Zhu S, Yang Y et al (2013) Field-directed assembly of patchy anisotropic microparticles with defined shape. Soft Matter 9:9219–9229. https://doi.org/10.1039/c3sm51119g

    Article  CAS  Google Scholar 

  37. Yin WJ, Shi T, Yan Y (2014) Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv Mater 26:4653–4658. https://doi.org/10.1002/adma.201306281

    Article  CAS  PubMed  Google Scholar 

  38. Dziomkina NV, Hempenius MA, Vancso GJ (2009) Towards true 3-dimensional BCC colloidal crystals with controlled lattice orientation. Polymer (Guildf) 50:5713–5719. https://doi.org/10.1016/j.polymer.2009.03.062

    Article  CAS  Google Scholar 

  39. Hoogenboom JP, Rétif C, De Bres E et al (2004) Template-induced growth of close-packed and non-close-packed colloidal crystals during solvent evaporation. Nano Lett 4:205–208. https://doi.org/10.1021/nl034867h

    Article  CAS  Google Scholar 

  40. Zhou Z, Yan Q, Li Q, Zhao XS (2007) Fabrication of binary colloidal crystals and non-close-packed structures by a sequential self-assembly method. Langmuir 23:1473–1477. https://doi.org/10.1021/la062601v

    Article  CAS  PubMed  Google Scholar 

  41. Zhong X, Sun Y, Kang C, Wan G (2017) The theory of dielectrophoresis and its applications on medical and materials research. Eur J Biomed Res 2:7. https://doi.org/10.18088/ejbmr.2.4.2016.pp7-11

    Article  Google Scholar 

  42. Edwards TD, Bevan MA (2014) Controlling colloidal particles with electric fields. Langmuir 30:10793–10803. https://doi.org/10.1021/la500178b

    Article  CAS  PubMed  Google Scholar 

  43. Lumsdon SO, Kaler EW, Velev OD (2004) Two-dimensional crystallization of microspheres by a coplanar AC electric field. Langmuir 20:2108–2116. https://doi.org/10.1021/la035812y

    Article  CAS  PubMed  Google Scholar 

  44. Leunissen ME, Van Blaaderen A (2008) Concentrating colloids with electric field gradients. II. Phase transitions and crystal buckling of long-ranged repulsive charged spheres in an electric bottle. J Chem Phys 128:164509. https://doi.org/10.1063/1.2909200

    Article  CAS  PubMed  Google Scholar 

  45. Leunissen ME, Sullivan MT, Chaikin PM, Van Blaaderen A (2008) Concentrating colloids with electric field gradients. I. Particle transport and growth mechanism of hard-sphere-like crystals in an electric bottle. J Chem Phys 128:164508. https://doi.org/10.1063/1.2909198

    Article  CAS  PubMed  Google Scholar 

  46. Sullivan MT, Zhao K, Hollingsworth AD, Austin RH, Russel WB, Chaikin PM (2006) An electric bottle for colloids. Phys Rev Lett 96:015703. https://doi.org/10.1103/PhysRevLett.96.015703

    Article  CAS  PubMed  Google Scholar 

  47. Fleischhaker F, Arsenault AC, Kitaev V, Peiris FC, von Freymann G, Manners I, Zentel R, Ozin GA (2005) Photochemically and thermally tunable planar defects in colloidal photonic crystals. J Am Chem Soc 127:9318–9319. https://doi.org/10.1021/ja0521573

    Article  CAS  PubMed  Google Scholar 

  48. Gu ZZ, Fujishima A, Sato O (2000) Photochemically tunable colloidal crystals. J Am Chem Soc 122:12387–12388

    Article  CAS  Google Scholar 

  49. Maurer MK, Lednev IK, Asher SA (2005) Photoswitchable spirobenzopyran-based photochemically controlled photonic crystals. Adv Funct Mater 15:1401–1406. https://doi.org/10.1002/adfm.200400070

    Article  CAS  Google Scholar 

  50. Jeong U, Xia Y (2005) Photonic crystals with thermally switchable stop bands fabricated from Se@Ag2Se spherical colloids. Angew Chemie - Int Ed 44:3099–3103. https://doi.org/10.1002/anie.200462906

    Article  CAS  Google Scholar 

  51. Ge J, Hu Y, Yin Y (2007) Highly tunable superparamagnetic colloidal photonic crystals. Angew Chemie - Int Ed 46:7428–7431. https://doi.org/10.1002/anie.200701992

    Article  CAS  Google Scholar 

  52. Collins KA, Zhong X, Song P, Little NR, Ward MD, Lee SS (2015) Electric-field-induced reversible phase transitions in two-dimensional colloidal crystals. Langmuir 31:10411–10417. https://doi.org/10.1021/acs.langmuir.5b03230

    Article  CAS  PubMed  Google Scholar 

  53. Van Der Wel C, Bhan RK, Verweij RW et al (2017) Preparation of colloidal organosilica spheres through spontaneous emulsification. Langmuir 33:8174–8180. https://doi.org/10.1021/acs.langmuir.7b01398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yethiraj A, Wouterse A, Groh B, van Blaaderen A (2004) Nature of an electric-field-induced colloidal martensitic transition. Phys Rev Lett 92:4. https://doi.org/10.1103/PhysRevLett.92.058301

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research was carried out in part at the Micro Device Laboratory and used microscopy resources within the Laboratory for Multiscale Imaging at Stevens Institute of Technology.

Code availability

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors.

Funding

ZJ received support from the Stevens Innovation & Entrepreneurship Doctoral Fellowship. SS received support from the NSF (DMR-1653465).

Corresponding author

Correspondence to Stephanie S. Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1519 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Z., Youssef, M., Samper, A. et al. Reversible solid-state phase transitions in confined two-layer colloidal crystals. Colloid Polym Sci 298, 1611–1617 (2020). https://doi.org/10.1007/s00396-020-04752-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04752-y

Keywords

Navigation