Skip to main content
Log in

The fractional porous medium equation on the hyperbolic space

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider a nonlinear degenerate parabolic equation of porous medium type, whose diffusion is driven by the (spectral) fractional Laplacian on the hyperbolic space. We provide existence results for solutions, in an appropriate weak sense, for data belonging either to the usual \(L^p\) spaces or to larger (weighted) spaces determined either in terms of a ground state of \(\Delta _{\mathbb {H}^{N}}\), or of the (fractional) Green’s function. For such solutions, we also prove different kind of smoothing effects, in the form of quantitative \(L^1-L^\infty \) estimates. To the best of our knowledge, this seems the first time in which the fractional porous medium equation has been treated on non-compact, geometrically non-trivial examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ambrosio, L., Bruè, E., Semola, D.: “Notes on Gradient Flows”, Book in preparation

  2. Ambrosio, L., Gigli, N., Savare, G.: “Gradient Flows In Metric Spaces and in the Space of Probability Measures”, Lectures in Mathematics. ETH Zürich, (2008), Birkhäuser Basel, ISBN 978-3-7643-8721-1

  3. Athanasopoulos, I., Caffarelli, L.: Continuity of the temperature in boundary heat control problems. Adv. Math. 224, 293–315 (2010)

    Article  MathSciNet  Google Scholar 

  4. Bandle, C., González, MdM, Fontelos, M.A., Wolanski, N.: A nonlocal diffusion problem on manifolds. Commun. Partial Differ. Equ. 43, 652–676 (2018)

    Article  MathSciNet  Google Scholar 

  5. Banica, V., González, MdM, Sáez, M.: Some constructions for the fractional Laplacian on noncompact manifolds. Rev. Mat. Iberoam. 31, 681–712 (2015)

    Article  MathSciNet  Google Scholar 

  6. Bénilan, P., Crandall, M.G.: Regularizing Effects of Homogeneous Evolution Equations, Contributions to Analysis and Geometry, pp. 23–39. Johns Hopkins University Press, Baltimore (1981)

    MATH  Google Scholar 

  7. Bénilan, P., Crandall, M. G., Pazy, A.: “Nonlinear evolution equations in Banach spaces”, Unpublished Book

  8. Bonforte, M., Figalli, A., Ros-Oton, X.: Infinite speed of propagation and regularity of solutions to the fractional porous medium equation in general domains. Commun. Pure Appl. Math. 70, 1472–1508 (2017)

    Article  MathSciNet  Google Scholar 

  9. Bonforte, M., Figalli, A., Vázquez, J.L.: Sharp global estimates for local and nonlocal porous medium-type equations in bounded domains. Anal. PDE 11, 945–982 (2018)

    Article  MathSciNet  Google Scholar 

  10. Bonforte, M., Gazzola, F., Grillo, G., Vázquez, J.L.: Classification of radial solutions to the Emden–Fowler equation on the hyperbolic space. Calc. Var. Partial Differ. Equ. 46, 375–401 (2013)

    Article  MathSciNet  Google Scholar 

  11. Bonforte, M., Grillo, G., Vázquez, J.L.: Fast diffusion flow on manifolds of nonpositive curvature. J. Evol. Equ. 8, 99–128 (2008)

    Article  MathSciNet  Google Scholar 

  12. Bonforte, M., Sire, Y., Vázquez, J.L.: Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains. Discrete Contin. Dyn. Syst. 35, 5725–5767 (2015)

    Article  MathSciNet  Google Scholar 

  13. Bonforte, M., Vázquez, J.L.: Quantitative local and global a priori estimates for fractional nonlinear diffusion equations. Adv. Math. 250, 242–284 (2014)

    Article  MathSciNet  Google Scholar 

  14. Bonforte, M., Vázquez, J.L.: A priori estimates for fractional nonlinear degenerate diffusion equations on bounded domains. Arch. Ration. Mech. Anal. 218(1), 317–362 (2015)

    Article  MathSciNet  Google Scholar 

  15. Bonforte, M., Vázquez, J.L.: Fractional nonlinear degenerate diffusion equations on bounded domains part I. existence, uniqueness and upper bounds. Nonlinear Anal. 131, 363–398 (2016)

    Article  MathSciNet  Google Scholar 

  16. Brezis, H.: Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations. In: Proceedings Symp. Nonlinear Functional Analysis, Madison, Academic Press, pp. 101–156 (1971)

  17. Brezis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland, (1973)

  18. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32, 1245–1260 (2007)

    Article  MathSciNet  Google Scholar 

  19. Crandall, M.G., Liggett, T.M.: Generation of semi-groups of nonlinear transformations on general Banach spaces. Am. J. Math. 93, 265–298 (1971)

    Article  MathSciNet  Google Scholar 

  20. Crandall, M.G., Pierre, M.: Regularizing effectd for \(u_t = A\phi (u)\) in \(L^1\). J. Funct. Anal. 45, 194–212 (1982)

    Article  Google Scholar 

  21. Davies, E.B.: Heat kernels and spectral theory, Cambridge Tracts in Mathematics, 92. Cambridge University Press, Cambridge, x+197 pp (1989)

  22. de Pablo, A., Quirós, F., Rodríguez, A., Vázquez, J.L.: A fractional porous medium equation. Adv. Math. 226, 1378–1409 (2011)

    Article  MathSciNet  Google Scholar 

  23. de Pablo, A., Quirós, F., Rodríguez, A., Vázquez, J.L.: A general fractional porous medium equation. Commun. Pure Appl. Math. 65, 1242–1284 (2012)

    Article  MathSciNet  Google Scholar 

  24. Giusti, E.: “Direct methods in the calculus of variations”, World Scientific Publishing Co., Inc., River Edge, NJ. viii+403 pp. ISBN: 981-238-043-4 (2003)

  25. González, MdM, Sáez, M.: Fractional Laplacians and extension problems: the higher rank case. Trans. Am. Math. Soc. 370, 8171–8213 (2018)

    Article  MathSciNet  Google Scholar 

  26. Grigor’yan, A.: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Am. Math. Soc. (N.S.) 36, 135–249 (1999)

    Article  MathSciNet  Google Scholar 

  27. Grigor’yan, A.: Heat kernels on weighted manifolds and applications. Cont. Math. 398, 93–191 (2006)

    Article  MathSciNet  Google Scholar 

  28. Grigor’yan, A.: “Heat Kernel and Analysis on Manifolds”, AMS/IP Studies in Advanced Mathematics, 47, (2013)

  29. Grillo, G., Ishige, K., Muratori, M.: Nonlinear characterizations of stochastic completeness. J. Math. Pures Appl. 139, 63–82 (2020)

    Article  MathSciNet  Google Scholar 

  30. Grillo, G., Muratori, M.: Radial fast diffusion on the hyperbolic space. Proc. London Math. Soc. 109, 283–317 (2014)

    Article  MathSciNet  Google Scholar 

  31. Grillo, G., Muratori, M.: Smoothing effects for the porous medium equation on Cartan–Hadamard manifolds. Nonlinear Anal. 131, 346–362 (2016)

    Article  MathSciNet  Google Scholar 

  32. Grillo, G., Muratori, M., Punzo, F.: Weighted fractional porous media equations: existence and uniqueness of weak solutions with measure data. Calc. Var. Partial Diff. Equ. 54, 3303–3335 (2015)

    Article  Google Scholar 

  33. Grillo, G., Muratori, M., Punzo, F.: The porous medium equation with measure data on negatively curved Riemannian manifolds. J. Eur. Math. Soc. 20, 2769–2812 (2018)

    Article  MathSciNet  Google Scholar 

  34. Grillo, G., Muratori, M., Punzo, F.: The porous medium equation with large initial data on negatively curved Riemannian manifolds. J. Math. Pures Appl. 113, 195–226 (2018)

    Article  MathSciNet  Google Scholar 

  35. Grillo, G., Muratori, M., Vázquez, J.L.: The porous medium equation on Riemannian manifolds with negative curvature: the superquadratic case. Math. Ann. 373, 119–153 (2019)

    Article  MathSciNet  Google Scholar 

  36. Grillo, G., Muratori, M., Vázquez, J.L.: The porous medium equation on Riemannian manifolds with negative curvature. the large-time behaviour. Adv. Math. 314, 328–377 (2017)

    Article  MathSciNet  Google Scholar 

  37. Komura, Y.: Nonlinear semi-groups in Hilbert space. J. Math. Soc. Japan 19, 493–507 (1967)

    Article  MathSciNet  Google Scholar 

  38. Roidos, N., Shao, Y.: The fractional porous medium equation on manifolds with conical singularities, preprint arXiv:1908.06915

  39. Roidos, N., Schrohe, E.: Existence and maximal \(L^p\)-regularity of solutions for the porous medium equation on manifolds with conical singularities. Commun. Partial Differ. Equ. 41, 1441–1471 (2016)

    Article  Google Scholar 

  40. Roidos, N., Schrohe, E.: Smoothness and long time existence for solutions of the porous medium equation on manifolds with conical singularities. Commun. Partial Differ. Equ. 43(10), 1456–1484 (2018)

    Article  MathSciNet  Google Scholar 

  41. Vázquez, J.L.: The Porous Medium Equation. Mathematical Theory. The Clarendon Press, Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  42. Vázquez, J.L.: Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Equations of Porous Medium Type. Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, Oxford (2006)

    Google Scholar 

  43. Vázquez, J.L.: Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type. J. Eur. Math. Soc. 16, 769–803 (2014)

    Article  MathSciNet  Google Scholar 

  44. Vázquez, J.L.: Fundamental solution and long time behaviour of the porous medium equation in hyperbolic space. J. Math. Pures Appl. 104, 454–484 (2015)

    Article  MathSciNet  Google Scholar 

  45. Vázquez, J.L., de Pablo, A., Quirós, F., Rodríguez, A.: Classical solutions and higher regularity for nonlinear fractional diffusion equations. J. Eur. Math. Soc. (JEMS) 19, 1949–1975 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The second author is partially supported by Project MTM2017-85757-P (Spain), and by the E.U. H2020 MSCA programme, Grant Agreement 777822. The first and fourth author are partially supported by the PRIN Project 201758MTR2 “Direct and inverse problems for partial differential equations: theoretical aspects and applications” (Italy) and they are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). The research of the third author is supported in part by an INSPIRE faculty fellowship (IFA17-MA98).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Bonforte.

Additional information

Communicated by M.Del Pino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Green function estimates in \(\mathbb {H}^{N}\)

Appendix A. Green function estimates in \(\mathbb {H}^{N}\)

This section is devoted to provide proper estimates of Green function \(\mathbb {G}_{\mathbb {H}^N}^s(x, y)\) for the fractional laplacian on the hyperbolic space for \(0< s < 1.\) It is well-known that the Green function is given by the following explicit formula

$$\begin{aligned} \mathbb {G}_{\mathbb {H}^N}^s(x, y) = \int _0^{+\infty } \frac{k_{\mathbb {H}^{N}}(t,x,y)}{t^{1-s}}\,dt, \end{aligned}$$

where \(k_{\mathbb {H}^{N}}(t,x,y)\) is the heat kernel for \(- \Delta _{\mathbb {H}^{N}}.\) Furthermore, \(k_{\mathbb {H}^{N}}\) satisfies the following estimates (see [21]): for \(N \ge 2,\) there exist some positive constants \(A_N\) and \(B_N\) such that

$$\begin{aligned} A_N h_N(t, x, y) \le k_{\mathbb {H}^{N}}(t, x, y) \le B_N h_N(t, x, y) \quad \text{ for } \text{ all } \ t > 0 \ \text{ and } \ x, y \in \mathbb {H}^{N}, \end{aligned}$$
(A.1)

where \(h_N (t, x, y)\) is given by

$$\begin{aligned} h_N(t, x, y) := h_N(t, r) = (4 \pi t)^{-\frac{N}{2}} e^{- \frac{(N-1)^2 t}{4} - \frac{(N-1) r}{2} - \frac{r^2}{4t}} ( 1 + r + t)^{\frac{(N-3)}{2}}(1 + r), \end{aligned}$$
(A.2)

where \(r := r(x, y) = \mathrm{dist}(x, y)\).

Using (A.1) we shall obtain the following Green functions estimates:

Lemma A.1

Let \(N \ge 3\) and \(0< s < 1\). Then there exist \(R_1, R_2, {\underline{C}}_1, {{\overline{C}}}_1, {\underline{C}}_2, {{\overline{C}}}_2>0\), only depending on N and s, such that

$$\begin{aligned} \frac{{\underline{C}}_1}{(r(x, y))^{N -2s}} \le \mathbb {G}_{\mathbb {H}^N}^s(x, y) \le \frac{{{\overline{C}}}_1}{(r(x, y))^{N -2s}} \quad \text { for all }(x, y) \in \mathbb {H}^{N}: 0< r(x, y) \le R_1; \end{aligned}$$
(A.3)

and

$$\begin{aligned} \frac{{\underline{C}}_2\,e^{-(N-1) r(x, y)}}{(r(x, y))^{1-s}} \le \mathbb {G}_{\mathbb {H}^N}^s(x, y) \le \frac{{{\overline{C}}}_2\, e^{-(N-1) r(x, y)}}{(r(x, y))^{1-s}} \quad \text { for all }(x, y) \in \mathbb {H}^{N}:r(x, y) \ge R_2. \end{aligned}$$
(A.4)

Proof

Let \(h_{N}(t,r)\) be as defined in (A.2), we compute

$$\begin{aligned}&\int _0^{+\infty } \frac{h_{N}(t,r)}{t^{1-s}}\,dt = \int _{0}^{\infty } \frac{(4 \pi t)^{N/2} e^{-\frac{(N-1)^2}{4}t - \frac{(N-1)r}{2}- \frac{r^2}{4t}}(1 + r + t)^{(N-3)/2}(1 + r)}{t^{1 -s}}\,\mathrm{d}t \nonumber \\&\quad = \frac{e^{-(N-1)r/2 }(1 + r)}{(4 \pi )^{N/2}} \int _{0}^{\infty } t^{-N/2 - 1 + s} (1 + r + t)^{(N-3)/2} e^{-(\frac{(N-1) \sqrt{t}}{2} - \frac{r}{2 \sqrt{t}})^2} e^{-(N-1)r/2 } \, \mathrm{d}t \nonumber \\&\quad = \frac{e^{-(N-1) r}(1 + r)}{(4 \pi )^{N/2}} \int _{0}^{\infty } t^{\frac{-N + 2s -2}{2}} (1 + r + t)^{(N-3)/2} e^{-(\frac{(N-1) \sqrt{t}}{2} - \frac{r}{2 \sqrt{t}})^2} \, \mathrm{d}t. \end{aligned}$$
(A.5)

Now making the following substitution one can write

$$\begin{aligned} z = \frac{r}{2\sqrt{t}} - \frac{(N-1)\sqrt{t}}{2} \ \Leftrightarrow \sqrt{t} = \frac{- z + \sqrt{z^2 + (N-1) r}}{N-1}. \end{aligned}$$

Therefore, we have

$$\begin{aligned} \mathrm{d}t = -\frac{2}{(N-1)^2} \frac{( \sqrt{z^2 + (N-1)r} - z)^2}{\sqrt{z^2 + (N-1) r}} \, \mathrm{d}z. \end{aligned}$$

Further substituting back in (A.5) yields

$$\begin{aligned}&\int _0^{+\infty } \frac{h_{N}(t,r)}{t^{1-s}}\,dt = \frac{ e^{-(N-1)r}(1 + r)}{(N-1)^{2s - 3}(4\pi )^{N/2}} \times \\&\quad \left\{ \int _{-\infty }^{\infty } \frac{(1 + r + ( \sqrt{z^2 + (N-1)r} -z)^2 )^{(N-3)/2} (\sqrt{z^2 + (N-1)r} - z)^2 e^{-z^2}}{(-z + \sqrt{z^2 + (N-1)r})^{N - 2s +2} \sqrt{z^2 + (N-1) r}} \, \mathrm{d}z \right\} . \end{aligned}$$

Now for \(r \rightarrow \infty ,\) one can look for the leading term as follows

$$\begin{aligned}&\int _0^{+\infty } \frac{h_{N}(t,r)}{t^{1-s}}\,dt = C_N e^{-(N-1)r}(1 + r) r^{\frac{-N + 2s -2}{2} + \frac{N-3}{2} + \frac{1}{2}} \times \\&\quad \underbrace{ \left\{ \int _{-\infty }^{\infty } \frac{((1/r + 1)(N-1)^2 + ( \sqrt{z^2/r + (N-1)} -z/\sqrt{r})^2 )^{(N-3)/2} (\sqrt{z^2/r + (N-1)} - z/\sqrt{r})^2 e^{-z^2}}{(-z/r + \sqrt{z^2 + (N-1)})^{N - 2s +2} \sqrt{z^2/r + (N-1)}} \, \mathrm{d}z \right\} }_= I_{N} . \end{aligned}$$

The finiteness of \(I_N\) follows easily from the fact that \(e^{-z^2}\) is the leading term at infinity. Therefore, recalling (A.1), we obtain

$$\begin{aligned} \int _0^{+\infty } \frac{h_{N}(t,r)}{t^{1-s}}\,dt = C_N I_N e^{-(N-1)r} r^{s-1} + \circ (e^{-(N-1)r} r^{s-1}) \quad \text {as } r \rightarrow \infty . \end{aligned}$$

Hence, we obtain (A.4). Now we turn to prove (A.3). To see this we can make the change of variable as \(\alpha = \frac{r^2}{4t}\) and therefore we can write

$$\begin{aligned} \int _0^{+\infty } \frac{h_{N}(t,r)}{t^{1-s}}\,dt = C_N \frac{e^{-(N-1)r/2} (1 + r)}{r^{(N-2s)}} \underbrace{ \int _{0}^{\infty } {\alpha }^{\frac{N-2s -2}{2}} e^{\frac{-(N-1)^2 r^2}{16 \alpha } - \alpha } \left( 1 + r + \frac{r^2}{4 \alpha }\right) ^{\frac{(N-3)}{2}} \, \mathrm{d}\alpha }_= J_N. \end{aligned}$$

Again, as before, the integral is finite for \(0< s < 1\) and hence

$$\begin{aligned} G_{s}(r, t) = C_N J_N r^{-(N - 2s)} + o(r^{-(N - 2s)})\quad \text {as } r \rightarrow 0^+. \end{aligned}$$

This proves the lemma. \(\square \)

From Lemma A.1 we derive

Corollary A.2

Let \(N \ge 3\) and \( 0< s < 1\). Then there exist positive constants \({\underline{C}}_3,{{\overline{C}}}_3, {\underline{C}}_4, {{\overline{C}}}_4\), only depending on N and s, such that

$$\begin{aligned} {\underline{C}}_3 \frac{1}{(r(x, y))^{N-2s}} \le \mathbb {G}_{\mathbb {H}^N}^s(x, y) \le {{\overline{C}}}_3 \frac{1}{(r(x, y))^{N-2s}} \quad \text { for all }(x, y) \in \mathbb {H}^{N}: 0<r(x, y) \le 1\,, \end{aligned}$$
(A.6)
$$\begin{aligned} {\underline{C}}_4 \frac{ e^{-(N-1) r(x, y)}}{(r(x, y))^{1-s}} \le \mathbb {G}_{\mathbb {H}^N}^s(x, y) \le {{\overline{C}}}_4 \frac{ e^{-(N-1) r(x, y)}}{(r(x, y))^{1-s}} \quad \text { for all }(x, y) \in \mathbb {H}^{N}: r(x, y) \ge 1\,.\nonumber \\ \end{aligned}$$
(A.7)

Furthermore, the following global estimate holds:

$$\begin{aligned} \mathbb {G}_{\mathbb {H}^N}^s(x, y) \le \frac{{\overline{C}}_5}{(r(x, y))^{N-2s}} \quad \text { for all }(x, y) \in \mathbb {H}^{N}: r(x, y) > 0\,, \end{aligned}$$
(A.8)

where \({\overline{C}}_5=\min \{{{\overline{C}}}_3,{{\overline{C}}}_4\}\).

Proof

The proof of this corollary is a straightforward consequence of Lemma A.1. We give a detailed proof of (A.7), the proof of (A.6) can be achieved with similar arguments. On the other hand, the proof of (A.8) follows by noting that \(e^{-(N-1)r}\le r^{-N+s+1}\) for all \(r>1\) and then combining (A.6) with (A.7). \(\square \)

Proof of (A.7)

We may assume \(R_2 > 1,\) where \(R_2\) is as given in Lemma A.1 (otherwise, there is nothing to prove). Next we set

$$\begin{aligned} g(r):= \frac{e^{-(N-1)r}}{r^{1-s}} \quad \text {with }r>0 \, \end{aligned}$$
(A.9)

and we note that

$$\begin{aligned} g(r(x, y)) \ge g(R_2) \quad \text {for all }1 \le r(x, y) \le R_2\,. \end{aligned}$$

Set \(M : = {\mathrm{max}}_{1 \le r(x, y) \le R_2} \mathbb {G}_{\mathbb {H}^N}^s(x, y)\), then

$$\begin{aligned} \mathbb {G}_{\mathbb {H}^N}^s(x, y) \le M = \frac{M}{g(R_2)} g(R_2) \le \frac{M}{g(R_2)} g(r(x, y)) \quad \text {for all } 1 \le r(x, y) \le R_2. \end{aligned}$$

By taking \({{\overline{C}}}_4: = {\mathrm{max}} \{ \frac{M}{g(R_2)}, \overline{C}_2 \}\) we get the upper bound in (A.7).

Now, to obtain the lower bound, we note that

$$\begin{aligned} g(r(x, y)) \le g(1) \quad \text {for all }1 \le r(x, y) \le R_2\,. \end{aligned}$$

Then, we set \(m : = { \mathrm min}_{1 \le r(x, y) \le R_2} \mathbb {G}_{\mathbb {H}^N}^s(x, y)\) and we conclude

$$\begin{aligned} \mathbb {G}_{\mathbb {H}^N}^s(x, y) \ge m =\frac{m}{g(1)} g(1) \ge \frac{m}{g(1)} g(r(x, y)) \quad \text {for all } 1 \le r(x, y) \le R_2. \end{aligned}$$

Taking \({\underline{C}}_4 := {\mathrm{min}} \{ \frac{m}{g(1)}, \underline{C}_2 \},\) we obtain the lower bound in (A.7). \(\square \)

It can be useful to check that, if \(\psi \in C^1_c(0,T; \text{ L}_c^{\infty }(\mathbb {H}^{N}))\) with \(\psi \ge 0\), then \((- \Delta _{\mathbb {H}^{N}})^{-s}(\psi )\) behaves like \(G_{s}(x_0,x)\) near infinity:

Lemma A.3

For all \(\psi \in C^1_c(0,T; \text{ L}_c^{\infty }(\mathbb {H}^{N}))\) with \(\psi \ge 0\), there exist \({{\hat{R}}} > 0\) and two positive functions \({\underline{C}},{{\overline{C}}} \in C^1_c(0,T)\) such that

$$\begin{aligned} {\underline{C}}(t)\,\frac{ e^{-(N-1) r(x_0, x)}}{(r(x_0, x))^{1-s}} \le (-\Delta _{\mathbb {H}^{N}})^{-s}\,\psi (x,t) \le {{\overline{C}}}(t)\, \frac{ e^{-(N-1) r(x_0, x)}}{(r(x_0, x))^{1-s}} \quad \text { for } r(x_0,x)\ge {{\hat{R}}}\,. \end{aligned}$$
(A.10)

Furthermore, for all \(R>0\), there exists a positive function \({{\overline{D}}} \in C^1_c(0,T)\) such that

$$\begin{aligned} (-\Delta _{\mathbb {H}^{N}})^{-s}\,\psi (x,t) \le {{\overline{D}}}(t) \quad \text { for } r(x_0,x)\le R\,. \end{aligned}$$
(A.11)

Proof

Proof of (A.10). We first prove the upper bound. Let \(g=g(r)\) be as in (A.9) and denote with \(K\subset \mathbb {H}^{N}\) the compact support of \(\psi \) with respect to the space variable. Then we can write

$$\begin{aligned} (-\Delta _{\mathbb {H}^{N}})^{-s}\,\psi (x,t)&= \int _{K} \mathbb {G}_{\mathbb {H}^N}^s(x, y) \psi (y,t) \, \mathrm{d}\mu _{\mathbb {H}^N}(y) \nonumber \\&= g(r(x_0, x)) \int _{K} \frac{ \mathbb {G}_{\mathbb {H}^N}^s(x, y)}{g(r(x_0, x))} \, \psi (y,t) \, \mathrm{d}\mu _{\mathbb {H}^N}(y)\,. \end{aligned}$$
(A.12)

Furthermore, by Corollary A.2 there exist constants \({\underline{C}}_4\) and \({{\overline{C}}}_4\) such that there holds

$$\begin{aligned} {\underline{C}}_4\, g(r(x, y)) \le \mathbb {G}_{\mathbb {H}^N}^s(x, y) \le {{\overline{C}}}_4 \, g(r(x, y)) \quad \text{ for } \ r(x, y) > 1. \end{aligned}$$

Let \(\gamma > 0\) be such that \(r(x_0, y) \le \gamma \) for all \(y \in K\) and assume \(r(x_0, x) \ge 1 + \gamma ,\) we have

$$\begin{aligned} r(x,y) \ge r(x_0, x) - r(x_0, y) > 1 + \gamma - \gamma = 1. \end{aligned}$$

Hence,

$$\begin{aligned} \frac{\mathbb {G}_{\mathbb {H}^N}^s(x, y)}{g(r(x_0, x))} \le {{\overline{C}}}_4 \frac{g(r(x,y))}{g(r(x_0, x))}\quad \text{ for } \ r(x_0, x) \ge 1 + \gamma . \end{aligned}$$

Now, using the fact that the function g is decreasing, for \(r(x_0, x) \ge 1 + \gamma \) and for all \(y\in K\) we have

$$\begin{aligned} \frac{\mathbb {G}_{\mathbb {H}^N}^s(x, y)}{g(r(x_0, x))}&\le {{\overline{C}}}_4 \, \frac{g(r(x, y))}{g(r(x_0, x))} \le {{\overline{C}}}_4 \, \frac{g(r(x_0, x) - r(x_0, y))}{g(r(x_0, x))} \\&= {{\overline{C}}}_4 \, e^{(N-1)r(x_0, y)} \left( \frac{r(x_0, x)}{r(x_0, x) - r(x_0, y)} \right) ^{1-s} \\&= {{\overline{C}}}_4 \, e^{(N-1)r(x_0, y)} \frac{1}{\left( 1- \frac{r(x_0, y)}{r(x_0, x)} \right) ^{1-s}} \le {{\overline{C}}}_4 \frac{e^{(N-1)r(x_0, y)}}{\left( 1- \frac{r(x_0, y)}{1 + \gamma } \right) ^{1-s}}\,, \end{aligned}$$

where the latter term is well defined since \(r(x_0, y) \le \gamma \) for all \(y \in K.\) Now, plugging the above estimate into (A.12) we conclude that

$$\begin{aligned} (-\Delta _{\mathbb {H}^{N}})^{-s}\,\psi (x,t) \le g(r(x_0, x)) \underbrace{\int _{K} {{\overline{C}}}_4 \, \frac{e^{(N-1)r(x_0, y)}}{\left( 1- \frac{r(x_0, y)}{1 + \gamma } \right) ^{1-s}} \, \psi (y,t)\, \mathrm{d}\mu _{\mathbb {H}^N}(y)}_{= {{\overline{C}}}(t)\in C^1_c(0,T)} \quad \text {for all } r(x_0, x) \ge 1+\gamma \,. \end{aligned}$$

Next we turn to prove lower the bound in (A.10). For \(r(x_0, x) \ge 1+\gamma \), invoking again Corollary A.2, we have

$$\begin{aligned} \int _{K} \frac{\mathbb {G}_{\mathbb {H}^N}^s(x, y)}{g(r(x_0, x))} \, \psi (y,t) \, \mathrm{d}\mu _{\mathbb {H}^N}(y)&\ge {\underline{C}}_4 \int _{K} \frac{g(r(x, y))}{g(r(x_0, x))} \, \psi (y,t) \, \mathrm{d}\mu _{\mathbb {H}^N}(y) \\&= {\underline{C}}_4 \int _{K} e^{(N-1) (r(x_0, x) - r(x, y))} \left( \frac{r(x_0, x)}{r(x, y)} \right) ^{1-s} \, \psi (y,t) \, \mathrm{d}\mu _{\mathbb {H}^N}(y) \\&\ge {\underline{C}}_4 \int _{K} e^{-(N-1) r(x_0, y)} \left( \frac{r(x_0, x)}{r(x, y)} \right) ^{1-s} \, \psi (y,t) \, \mathrm{d}\mu _{\mathbb {H}^N}(y)\,, \end{aligned}$$

where the last estimate follows from

$$\begin{aligned} r(x_0, x) - r(x, y) \ge - r(x_0, y)\,. \end{aligned}$$

Assume now that \(r(x_0, x) > 3\gamma \), recalling that \(r(x_0, y) \le \gamma ,\) we infer

$$\begin{aligned} r(x, y) \ge r(x_0, x) - r(x_0, y)\ge 2\gamma \end{aligned}$$

which yield

$$\begin{aligned} \left( 1 - \frac{r(x_0, y)}{r(x, y)} \right) ^{1-s} \ge \frac{1}{2^{1-s}}. \end{aligned}$$

Inserting this into (A.12) we finally obtain

$$\begin{aligned} (-\Delta _{\mathbb {H}^{N}})^{-s}\,\psi (x,t) \ge g(r(x_0, x)) \underbrace{\int _{K} {{\overline{C}}}_4 \, \frac{e^{(N-1)r(x_0, y)}}{2^{1-s}} \, \psi (y,t)\, \mathrm{d}\mu _{\mathbb {H}^N}(y)}_{= {\underline{C}}(t)\in C^1_c(0,T)} \quad \text {for all } r(x_0, x) > 3\gamma . \end{aligned}$$

Summarising, the proof of (A.10) follows by taking \({{\hat{R}}}:=\max \{1+\gamma , 3\gamma \} \).

Proof of (A.11). As above, let K be the compact support of \(\psi \) with respect to x and let \(\gamma > 0\) be such that \(r(x_0, y) \le \gamma \) for all \(y \in K\). Let \(R>0\), for all \(r(x_0,x)\le R\) we have \(r(x,y)\le r(x,x_0)+r(x_0,y)\le R +\gamma \). Hence, by exploiting the estimate (A.8), we infer

$$\begin{aligned} (-\Delta _{\mathbb {H}^{N}})^{-s}\,\psi (x,t)&= \int _{K} \mathbb {G}_{\mathbb {H}^N}^s(x, y) \psi (y,t) \mathrm{d}\mu _{\mathbb {H}^N}(y) \\&\le \Vert \psi (x,t)\Vert _{L^{\infty }(\mathbb {H}^{N})} \int _{B_{R +\gamma }(x)} \frac{{\overline{C}}_5}{(r(x, y))^{N-2s}} \, \mathrm{d}\mu _{\mathbb {H}^N}(y) \end{aligned}$$

and the proof follows by setting \(D(t):= \Vert \psi (x,t)\Vert _{L^{\infty }(\mathbb {H}^{N})} \omega _N \int _{0}^{R +\gamma } \frac{{\overline{C}}_5}{r^{N-2s}} \,(\sinh (r))^{N-1}\, \mathrm{d}r\), where \(\omega _N\) is the volume of the N dimensional unit sphere. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berchio, E., Bonforte, M., Ganguly, D. et al. The fractional porous medium equation on the hyperbolic space. Calc. Var. 59, 169 (2020). https://doi.org/10.1007/s00526-020-01817-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-01817-2

Mathematics Subject Classification

Navigation