Skip to main content
Log in

Mapping QTL for important seed traits in an interspecific F2 population of pigeonpea

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Seed traits present important breeding targets for enhancing grain yield and quality in various grain legume crops including pigeonpea. The present study reports significant genetic variation for six seed traits including seed length (SL), seed width (SW), seed thickness (ST), seed weight (SWT), electrical conductivity (EC) and water uptake (WU) among Cajanus cajan (L.) Millspaugh acc. ICPL 20340 and Cajanus scarabaeoides (L.) Thouars acc. ICP 15739 and an F2 population derived from this interspecific cross. Maximum phenotypic values recorded for the F2 population were higher than observed in the parent ICPL 20340 [F2 max vs ICPL 20340: SW (7.05 vs 5.38), ST (4.63 vs 4.51), EC (65.17 vs 9.72), WU (213.17 vs 109.5)], which suggested contribution of positive alleles from the wild parent, ICP 15739. Concurrently, to identify the QTL controlling these seed traits, we assayed two parents and 94 F2 individuals with 113 polymorphic simple sequence repeat (SSR) markers. In the F2 population, 98 of the 113 SSRs showed Mendelian segregation ratio 1:2:1, whereas significant deviations were observed for 15 SSRs with their χ2 values ranging between 6.26 and 20.62. A partial genetic linkage map comprising 83 SSR loci was constructed. QTL analysis identified 15 marker-trait associations (MTAs) for seed traits on four linkage groups i.e. LG01, LG02, LG04 and LG05. Phenotypic variations (PVs) explained by these QTL ranged from 4.4 (WU) to 19.91% (EC). These genomic regions contributing significantly towards observed variability of seed traits would serve as potential candidates for future research that aims to improve seed traits in pigeonpea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbo S, Ladizinsky G, Weeden NF (1992) Genetic analysis and linkage studies of seed weight in lentil. Euphytica 58:259–266

    Google Scholar 

  • Bohra A, Mallikarjuna N, Saxena KB, Upadhyaya H, Vales I, Varshney R (2010) Harnessing the potential of crop wild relatives through genomics tools for pigeonpea improvement. J Plant Biol 37:83–98

    Google Scholar 

  • Bohra A, Dubey A, Saxena RK, Penmetsa RV, Poornima KN, Kumar N, Farmer AD, Srivani G, Upadhyaya HD, Gothalwal R, Ramesh R, Singh D, Saxena KB, Kavi Kishor PB, Singh NK, Town CD, May GD, Cook DR, Varshney RK (2011) Analysis of BAC-end sequences (BESs) and development of BES-SSR markers for genetic mapping and hybrid purity assessment in pigeonpea. BMC Plant Biol 11:56

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bohra A, Jha UC, Kavi Kishor PB, Pandey S, Singh NP (2014) Genomics and molecular breeding in lesser explored pulse crops: current trends and future opportunities. Biotechnol Adv 32:1410–1428

    CAS  PubMed  Google Scholar 

  • Bohra A, Jha R, Pandey G, Patil PG, Saxena RK, Singh IP, Singh D, Mishra RK, Mishra A, Singh F, Varshney RK, Singh NP (2017) New Hypervariable SSR markers for diversity analysis, hybrid purity testing and trait mapping in pigeonpea [Cajanus cajan (L.) Millspaugh]. Front Plant Sci 8:377

    PubMed  PubMed Central  Google Scholar 

  • Bohra A, Saxena KB, Varshney RK, Saxena RK (2020) Genomics assisted breeding for pigeonpea improvement. Theor Appl Genet 133:1721–1737

    CAS  PubMed  Google Scholar 

  • FAOSTAT (2018). https://faostat.fao.org/beta/en/#data/QC/visualize. Accessed 5 Mar 2020

  • Fedoruk MJ, Vandenberg A, Bett KE (2013) Quantitative trait loci analysis of seed quality characteristics in lentil using single nucleotide polymorphism markers. Plant Genome 6:1–10

    Google Scholar 

  • Gnanesh BN, Bohra A, Sharma M, Byregowda M, Pande S, Wesley V, Saxena RK, Saxena KB, KaviKishor PB, Varshney RK (2011) Genetic mapping and quantitative trait locus analysis of resistance to sterility mosaic disease in pigeonpea [Cajanus cajan (L.) Millsp.]. Field Crops Res 123:53–61

    Google Scholar 

  • Han Y, Li D, Zhu D, Li H, Li X, Teng W, Li W (2012) QTL analysis of soybean seed weight across multi-genetic backgrounds and environments. Theor Appl Genet 125:671–683

    CAS  PubMed  Google Scholar 

  • Hirota TK, Takahata T, Ogawa M, Iwai IY (2005) Quality of soybean seeds grown in Hyogo prefecture. Bull Hyogo Pre Tech Cent Agric Forest Fish (Agric) 53:6–12

    CAS  Google Scholar 

  • Jha R, Bohra A, Jha UC, Rana M, Chahota RK, Kumar S, Sharma TR (2017) Analysis of an intraspecific RIL population uncovers genomic segments harbouring multiple QTL for seed relevant traits in lentil (Lens culinaris L.). Physiol Mol Biol Plants 23:675–684

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kassa MT, Penmetsa RV, Carrasquilla-Garcia N, Sarma BK, Datta S, Upadhyaya HD, Varshney RK, Von Wettberg EJB, Cook DR (2012) Genetic patterns of domestication in pigeonpea (Cajanus cajan (L,) Millsp.) and wild Cajanus relatives. PLoS ONE 7:e39563

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khazaei H, Fedoruk M, Caron CT, Vandenber A, Bett KE (2018) Single nucleotide polymorphism markers associated with seed quality characteristics of cultivated lentil. Plant Genome 11:170051

    Google Scholar 

  • Khoury CK, Castaeda-Alvarez NP, Achicanoy HA, Sosa CC, Bernau V, Kassa MT, Norton SL, von der Maesen LJG, Upadhyaya HD, Ramirez-Villegas J, Jarvis A, Struik PC (2015) Crop wild relatives of pigeonpea [Cajanus cajan (L.) Millsp.]: distributions, ex situ conservation status, and potential genetic resources for abiotic stress tolerance. Biol Conserv 184:259–270

    Google Scholar 

  • Lamichaney A, Katiyar PK, Natarajan S, Sripathy KV (2016) Relationship among some seed characters, laboratory germination and field emergence in chickpea (Cicer arietinum L.) genotypes differing in testa colour. J Food Legume 29(1):29–32

    Google Scholar 

  • Lamichaney A, Kudekallu S, Kamble U, Sarangapany N, Katiyar PK, Bohra A (2017) Differences in seed vigour traits between desi (pigmented) and kabuli (non-pigmented) ecotypes of chickpea (Cicer arietinum L.) and its association with field emergence. J Environ Biol 38:735–742

    CAS  Google Scholar 

  • Li J, Zhao J, Li Y, Gao Y, Hua S, Nadeem M, Sun G, Zhang W, Hou J, Wang X (2019) Identification of a novel seed size associated locus SW9-1 in soybean. Crop J 7:548–559

    Google Scholar 

  • Liang HZ, Li WD, Wang H, Fang XJ (2005) Genetic effects on seed traits in soybean. Acta Genet Sin 32:1199–1204

    PubMed  Google Scholar 

  • Liu Y, Wang L, Sun C, Zhang Z, Zheng Y, Qiu F (2014) Genetic analysis and major QTL detection for maize kernel size and weight in multi-environments. Theor Appl Genet 127:1019–1037

    CAS  PubMed  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acid Res 8:4321–4326

    CAS  PubMed  Google Scholar 

  • Niu Y, Xu Y, Liu XF, Yang SX, Wei SP, Xie FT, Zhang YM (2013) Association mapping for seed size and shape traits in soybean cultivars. Mol Breed 31:785–794

    CAS  Google Scholar 

  • Obala J, Saxena RK, Singh VK et al (2019) Development of sequence-based markers for seed protein content in pigeonpea. Mol Genet Genom 294:57–68

    CAS  Google Scholar 

  • Obala J, Saxena RK, Singh VK et al (2020) Seed protein content and its relationships with agronomic traits in pigeonpea is controlled by both main and epistatic effects QTLs. Sci Rep 10:214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peksen E (2007) Relationships among electrical conductivity of seed leakage, germination, field emergence percentage and some seed traits in faba bean (Vicia faba). Asian J Chem 19:3178–3184

    CAS  Google Scholar 

  • Peksen A, Peksen E, Bozoglu H (2004) Relationships among some seed traits, laboratory germination and field emergence in cowpea genotypes. Pak J Bot 36:311–320

    Google Scholar 

  • Pérez-Vega E, Pañeda A, Rodríguez-Suárez C et al (2010) Mapping of QTLs for morpho-agronomic and seed quality traits in a RIL population of common bean (Phaseolus vulgaris L.). Theor Appl Genet 120:1367–1380

    PubMed  Google Scholar 

  • Porch TG, Beaver JS, Debouck DG, Jackson SA, Kelly JD, Dempewolf H (2013) Use of wild relatives and closely related species to adapt common bean to climate change. Agronomy 3:433–461

    Google Scholar 

  • Qi L, Sun Y, Li J, Su L, Zheng XM, Wang XN et al (2017) Identify QTLs for grain size and weight in common wild rice using chromosome segment substitution lines across six environments. Breed Sci 67:472–482

    PubMed  PubMed Central  Google Scholar 

  • Saeidi G (2008) Genetic variation and heritability for germination, seed vigour and field emergence in brown and yellow-seeded genotypes of flax. Int J Plant Prod 2:15–22

    Google Scholar 

  • Sharma D, Green JM (1980) Pigeonpea. In: Fehr WR, Hadley HH (eds) Hybridization of crop plants. American Society of Agronomy Crop Science. Society of America, Wisconsin, pp 471–481

    Google Scholar 

  • Singh RK, Raipuria RK, Bhatia VS, Rani A, Husain SM, Satyavathi CT, Chauhan GS, Mohapatra T (2008) Identification of SSR markers associated with seed coat permeability and electrolyte leaching in soybean. Physiol Mol Biol Plant 14:173–177

    CAS  Google Scholar 

  • Singh NK, Gupta DK, Jayaswal PK, Mahato AK, Dutta S, Singh S, Bhutani S, Dogra V, Singh BP, Kumawat G, Pal JK, Pandit A, Singh A, Rawal H, Kumar A, Rama Prashat G, Khare A, Yadav R, Raje RS, Singh MN, Datta S, Fakrudin B, Wanjari KB, Kansal R, Dash PK, Jain PK, Bhattacharya R, Gaikwad K, Mohapatra T, Srinivasan R, Sharma TR (2012) The first draft of the pigeonpea genome sequence. J Plant Biochem Biotechnol 21:98–112

    PubMed  Google Scholar 

  • Smykal P, Vernoud V, Blair MW, Soukup A, Thompson RD (2014) The role of the testa during development and in establishment of dormancy of the legume seed. Front Plant Sci 5:351

    PubMed  PubMed Central  Google Scholar 

  • Smýkal P, Coyne CJ, Ambrose MJ et al (2015) Legume crops phylogeny and genetic diversity for science and breeding. Crit Rev Plant Sci 34:43–104

    Google Scholar 

  • Teng WL, Sui MN, Li W, Wu DP, Zhao X, Li HY, Han YP, Li WB (2018) Identification of quantitative trait loci underlying seed shape in soybean across multiple environments. J Agric Sci 156:3–12

    CAS  Google Scholar 

  • Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA, Donoghue MTA, Azam S, Fan G, Whaley AM, Farmer AD, Sheridan J, Iwata A, Tuteja R, Penmetsa RV, Wu W, Upadhyaya HD, Yang SP, Shah T, Saxena KB, Michael T, McCombie WR, Yang B, Zhang G, Yang H, Wang J, Spillane C, Cook DR, May GD, Xu X, Jackson SA (2012) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30:83–89

    CAS  Google Scholar 

  • Verma P, Goyal R, Chahota RK, Sharma TR, Abdin MZ, Bhatia S (2015) Construction of a genetic linkage map and identification of QTLs for seed weight and seed size traits in lentil (Lens culinaris Medik.). PLoS ONE 10:e0139666

    PubMed  PubMed Central  Google Scholar 

  • Williams K, Sorrells ME (2014) Three-dimensional seed size and shape QTL in hexaploid wheat (Triticum aestivum L.) populations. Crop Sci 54:98–110

    Google Scholar 

  • Xu Y, Li HN, Li GJ, Wang X, Cheng LG, Zhang YM (2011) Mapping quantitative trait loci for seed size traits in soybean (Glycine max L. Merr.). Theor Appl Genet 122:581–594

    PubMed  Google Scholar 

  • Yadav P, Saxena KB, Hingane A, Kumar CS, Kandalkar VS, Varshney RK, Saxena RK (2019) An “Axiom Cajanus SNP Array” based high density genetic map and QTL mapping for high-selfing flower and seed quality traits in pigeonpea. BMC Genomics 20:35

    Google Scholar 

  • Yang S, Ash G, Harper J, Varling J, Wenzl P et al (2006) Low level of genetic diversity in cultivated pigeonpea compared to its wild relatives is revealed by diversity arrays technology. Theor Appl Genet 113:585–595

    CAS  PubMed  Google Scholar 

  • Yuste-Lisbona FJ, González AM, Capel C et al (2014) Genetic variation underlying pod size and color traits of common bean depends on quantitative trait loci with epistatic effects. Mol Breed 33:939–952

    Google Scholar 

  • Zavinon F, Adoukonou-Sagbadja H, Bossikponnon A, Dossa H, Ahanhanzo C (2019) Phenotypic diversity for agro-morphological traits in pigeon pea landraces [(Cajanus cajan L.) Millsp.] cultivated in southern Benin. Open Agric 4:487–549

    Google Scholar 

  • Zhang S, Hu X, Miao H, Chu Y, Cui F, Yang W, Wang C, Shen Y, Xu T, Zhao L, Zhang J, Chen J (2019) QTL identification for seed weight and size based on a high-density SLAF-seq genetic map in peanut (Arachis hypogaea L.). BMC Plant Biol 3:19

    Google Scholar 

Download references

Acknowledgements

Financial support from Indian Council of Agricultural Research (ICAR), New Delhi is gratefully acknowledged. Dr C.V. Sameer Kumar is highly acknowledged for providing seeds of ICPL 20340 and ICP 15739.

Author information

Authors and Affiliations

Authors

Contributions

AB conceived the idea, planned experiments and wrote manuscript with RJ, UCJ and NPS. RJ, AT performed genotyping experiments. RJ performed QTL analysis. AL along with AKM, VY recorded measurements related to seed traits. AB, RJ, DS analyzed the data. FS, IPS and DD helped in developing mapping population and interpretation of results. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Abhishek Bohra.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bohra, A., Jha, R., Lamichaney, A. et al. Mapping QTL for important seed traits in an interspecific F2 population of pigeonpea. 3 Biotech 10, 434 (2020). https://doi.org/10.1007/s13205-020-02423-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-02423-x

Keywords

Navigation