Skip to main content
Log in

Obestatin and Its Fragments: A New Approach to the Regulation of Body Weight under Normal and Pathological Conditions

  • REVIEW
  • Published:
Moscow University Biological Sciences Bulletin Aims and scope Submit manuscript

Abstract

Gastrointestinal diseases and eating disorders are among the most common pathologies in the world. One of the most widespread and dangerous consequence of many eating disorders is an uncontrolled weight gain that often leads to obesity. This review focuses on the 15-year-long studies of obestatin, one of the potential regulators of eating behavior. This peptide contains 23 amino-acids and appears due to the processing of the preproghrelin gene responsible for the coding of another orexigenic protein ghrelin. Obestatin and ghrelin have multiple physiological functions, including appetite regulation. Obestatin was originally obtained from the gastric mucosa in rats, but subsequent studies showed that it could be expressed in various tissues and had different effects in various organs and tissues. This review emphasizes possible anorexigenic effects of this peptide and their mechanisms. Despite the 15 years of research on obestatin, its influence on different organs and the mechanism of anorexigenic effects in particular bring about a lot of discussion. This is primarily due to the ambiguity of the peptide receptors’ determination and is also related to the possible degradation of the molecule into small fragments, which, in turn, can have their own effects. The local effects of obestatin and its derivatives in peripheral tissues and the possible effect at the central level indicate the potential of these peptides for further studies. For example, these compounds can be considered as the potential therapeutic compounds for eating disorders’ treatment. The aim of this work was to describe the relevance of the problem associated with obesity treatment and to summarize the results of numerous studies on obestatin and its fragments and their effects on appetite regulation in order to explain its possible mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Talley, N.J., Dyspepsia: Management guidelines for the millennium, Gut, 2002, vol. 50, suppl. 4, pp. iv72–iv78.

    PubMed  PubMed Central  Google Scholar 

  2. Hudson, J.I., Hiripi, E., Pope, Jr., H.G., and Kessler, R., The prevalence and correlates of eating disorders in the National Comorbidity Survey Replication, Biol. Psychiatry, 2007, vol. 61, no. 3, pp. 348–358.

    PubMed  Google Scholar 

  3. American Dietetic Association, Position of the American Dietetic Association: Nutrition intervention in the treatment of anorexia nervosa, bulimia nervosa, and eating disorders not otherwise specified (EDNOS), J. Am. Diet. Assoc., 2001, vol. 101, no. 7, pp. 810–819.

    Google Scholar 

  4. Millar, H.R., Wardell, F., Vyvyan, J.P., Naji, S.A., Prescott, G.J., and Eagles, J.M., Anorexia nervosa mortality in Northeast Scotland, 1965–1999, Am. J. Psychiatry, 2005, vol. 162, no. 4, pp. 753–757.

    PubMed  Google Scholar 

  5. World Health Organisation Website. https://www.who.int/about. Accessed March 13, 2020.

  6. James, W.P.T., Jackson-Leach, R., Mhurchu, C.N., Kalamara, E., Shayeghi, M., Rigby, N., Nishida, C.R.A., and Rodgers, A., in Overweight and Obesity (High Body Mass Index), World Health Organization, 2004, ch. 8.

    Google Scholar 

  7. Jungheim, E.S., Travieso, J.L., Carson, K.R., and Moley, K.H., Obesity and reproductive function, Obstet. Gynecol. Clin., 2012, vol. 39, no. 4, pp. 479–493.

    Google Scholar 

  8. Jiao, L., De Gonzalez, A.B., Hartge, P., et al., Body mass index, effect modifiers, and risk of pancreatic cancer: A pooled study of seven prospective cohorts, Cancer Causes Control, 2010, vol. 21, no. 8, pp. 1305–1314.

    PubMed  PubMed Central  Google Scholar 

  9. World Health Organisation Website. https://www.who.int/features/factfiles/obesity/ru/. Accessed March 13, 2020.

  10. Willer, C.J., Speliotes, E.K., Loos, R.J.F., et al., Six new loci associated with body mass index highlight a neuronal influence on body weight regulation, Nat. Genet., 2009, vol. 41, no. 1, pp. 25–34.

    CAS  PubMed  Google Scholar 

  11. Zheng, H., Lenard, N.R., Shin, A.C., and Berthoud, H.R., Appetite control and energy balance regulation in the modern world: reward-driven brain overrides repletion signals, Int. J. Obes., 2009, vol. 33, suppl. 2, pp. S8–S13.

    CAS  Google Scholar 

  12. Speliotes, E.K., Willer, C.J., Berndt, S.I., et al., Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index, Nat. Genet., 2010, vol. 42, no. 11, pp. 937–948.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gairolla, J., Kler, R., Modi, M., and Khurana, D., Leptin and adiponectin: Pathophysiological role and possible therapeutic target of inflammation in ischemic stroke, Rev. Neurosci., 2017, vol. 28, no. 3, pp. 295–306.

    PubMed  Google Scholar 

  14. Smirnova, O.V., The Physiology of the Endocrine System, Cambridge: Cambride Scholars Publishing, 2019.

    Google Scholar 

  15. Bartness, T.J., Keen-Rhinehart, E., Dailey, M.J., and Teubner, B.J., Neural and hormonal control of food hoarding, Am. J. Physiol. Integr. Comp. Physiol., 2011, vol. 301, no. 3, pp. 641–655.

    Google Scholar 

  16. Pimentel, G.D., Micheletti, T.O., Pace, F., Rosa, J.C., Santos, R.V.T., and Lira, F.S., Gut-central nervous system axis is a target for nutritional therapies, Nutr. J., 2012, vol. 11, no. 1, p. 22.

    PubMed  PubMed Central  Google Scholar 

  17. Shintani, M., Ogawa, Y., Ebihara, K., Aizawa-Abe, M., Miyanaga, F., Takaya, K., Hayashi, T., Inoue, G., Hosoda, K., Kojima, M., Kangawa, K., and Nakao, K., Ghrelin, an endogenous growth hormone secretagogue, is a novel orexigenic peptide that antagonizes leptin action through the activation of hypothalamic neuropeptide Y/Y1 receptor pathway, Diabetes, 2001, vol. 50, no. 2, pp. 227–232.

    CAS  PubMed  Google Scholar 

  18. Green, B.D. and Grieve, D.J., Biochemical properties and biological actions of obestatin and its relevence in type 2 diabetes, Peptides, 2018, vol. 100, pp. 249–259.

    CAS  PubMed  Google Scholar 

  19. Zhang, J.V., Ren, P.G., Avsian-Kretchmer, O., Luo, C.-W., Rauch, R., Klein, C., and Hsueh, A.J.W., Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin’s effects on food intake, Science, 2005, vol. 310, no. 5750, pp. 996–999.

    CAS  PubMed  Google Scholar 

  20. Scrima, M., Campiglia, P., Esposito, C., Gomez-Monterrey, I., Novellino, E., and D’Ursi, A.M., Obestatin conformational features: A strategy to unveil obestatin’s biological role?, Biochem. Biophys. Res. Commun., 2007, vol. 363, no. 3, pp. 500–505.

    CAS  PubMed  Google Scholar 

  21. Grönberg, M., Tsolakis, A.V., Magnusson, L., Janson, E.T., and Saras, J., Distribution of obestatin and ghrelin in human tissues: Immunoreactive cells in the gastrointestinal tract, pancreas, and mammary glands, J. Histochem. Cytochem., 2008, vol. 56, no. 9, pp. 793–801.

    PubMed  PubMed Central  Google Scholar 

  22. Grönberg, M., Amini, R.M., Stridsberg, M., Janson, E.T., and Saras, J., Neuroendocrine markers are expressed in human mammary glands, Regul. Pept., 2010, vol. 160, nos. 1–3, pp. 68–74.

    PubMed  Google Scholar 

  23. Gurriarán-Rodriguez, U., Santos-Zas, I., Al-Massadi, O., Mosteiro, C.S., Beiroa, D., Nogueiras, R., Crujeiras, A.B., Seoane, L.M., Señarís, J., García-Caballero, T., Gallego, R., Casanueva, F.F., Pazos, Y., and Camiña, J.P., The obestatin/GPR39 system is up-regulated by muscle injury and functions as an autocrine regenerative system, J. Biol. Chem., 2012, vol. 287, no. 45, pp. 38379–38389.

    PubMed  PubMed Central  Google Scholar 

  24. Moretti, E., Vindigni, C., Tripodi, S.A., Mazzi, L., Nuti, R., Figura, N., and Collodel, G., Immunolocalisation of ghrelin and obestatin in human testis, seminal vesicles, prostate and spermatozoa, Andrologia, 2014, vol. 46, no. 9, pp. 979–985.

    CAS  PubMed  Google Scholar 

  25. Zhao, C.-M., Furnes, M.W., Stenstrom, B., Kulseng, B., and Chen, D., Characterization of obestatin- and ghrelin-producing cells in the gastrointestinal tract and pancreas of rats: An immunohistochemical and electron-microscopic study, Cell Tissue Res., 2008, vol. 331, no. 3, pp. 575–587.

    CAS  PubMed  Google Scholar 

  26. Aydin, S., Ozkan, Y., Erman, F., Gurates, B., Kilic, N., Colak, R., Gundogan, T., Catak, Z., Bozkurt, M., Akin, O., Sen, Y., and Sahn, I., Presence of obestatin in breast milk: relationship among obestatin, ghrelin, and leptin in lactating women, Nutrition, 2008, vol. 24, nos. 7-8, pp. 689–693.

    CAS  PubMed  Google Scholar 

  27. Cengiz, H., Dagdeviren, H., Caypinar, S.S., Kanawati, A., Yildiz, S., and Ekin, M., Plasma serotonin levels are elevated in pregnant women with hyperemesis gravidarum, Arch. Gynecol. Obstet., 2015, vol. 291, no. 6, pp. 1271–1276.

    CAS  PubMed  Google Scholar 

  28. Dag, E., Aydin, S., Ozkan, Y., Erman, F., Dagli, A.F., and Gurger, M., Alteration in chromogranin A, obestatin and total ghrelin levels of saliva and serum in epilepsy cases, Peptides, 2010, vol. 31, no. 5, pp. 932–937.

    CAS  PubMed  Google Scholar 

  29. Xing, Y.X., Yang, L., Kuang, H.Y., Gao, X.Y., and Liu, H.L., Function of obestatin in the digestive system, Nutrition, 2017, vol. 34, pp. 21–28.

    CAS  PubMed  Google Scholar 

  30. Tsolakis, A.V., Grimelius, L., Stridsberg, M., Falkmer, S.E., Waldum, H.L., Saras, J., and Janson, E.T., Obestatin/ghrelin cells in normal mucosa and endocrine tumours of the stomach, Eur. J. Endocrinol., 2009, vol. 160, no. 6, pp. 941–949.

    CAS  PubMed  Google Scholar 

  31. Dun, S.L., Brailoiu, G.C., Brailoiu, E., Yang, J., Chang, J.K., and Dun, N.J., Distribution and biological activity of obestatin in the rat, J. Endocrinol., 2006, vol. 191, no. 2, pp. 481–490.

    CAS  PubMed  Google Scholar 

  32. Green, B.D., Irwin, N., and Flatt, P.R., Direct and indirect effects of obestatin peptides on food intake and the regulation of glucose homeostasis and insulin secretion in mice, Peptides, 2007, vol. 28, no. 5, pp. 981–987.

    CAS  PubMed  Google Scholar 

  33. Zhang, J.V., Jahr, H., Luo, C.W., Klein, C., Van Kolen, K., Ver, DonckL., De, A., Baart, E., Li, J., Moechars, D., and Hsueh, A.J., Obestatin induction of early-response gene expression in gastrointestinal and adipose tissues and the mediatory role of G protein-coupled receptor, GPR39, Mol. Endocrinol., 2008, vol. 22, no. 6, pp. 1464–1475.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Brunetti, L., Leone, S., Orlando, G., Recinella, L., Ferrante, C., Chiavaroli, A., Di Nisio, C., Di Michele, P., and Vacca, M., Effects of obestatin on feeding and body weight after standard or cafeteria diet in the rat, Peptides, 2009, vol. 30, no. 7, pp. 1323–1327.

    CAS  PubMed  Google Scholar 

  35. Hassouna, R., Zizzari, P., Viltart, O., Yang, S.K., Gardette, R., Videau, C., Badoer, E., Epelbaum, J., and Tolle, V., A natural variant of obestatin, Q90L, inhibits ghrelin’s action on food intake and Gh secretion and targets NPY and GHRH neurons in mice, PLoS One, 2012, vol. 7, no. 12.

  36. Jung, J.Y., Jeong, J.B., Kim, J.W., Kim, S.H., Koh, S.-J., Kim, B.G., and Lee, K.L., Circulating ghrelin levels and obestatin/ghrelin ratio as a marker of activity in ulcerative colitis, Intest. Res., 2015, vol. 13, no. 1, pp. 68–73.

    PubMed  PubMed Central  Google Scholar 

  37. Kolodziejski, P.A., Pruszynska-Oszmalek, E., Sassek, M., Kaczmarek, P., Szczepankiewicz, D., Billert, M., Mackowiak, P., Strowski, M.Z., and Nowak, K.W., Changes in obestatin gene and GPR39 receptor expression in peripheral tissues of rat models of obesity, type 1 and type 2 diabetes, J. Diabetes, 2017, vol. 9, no. 4, pp. 353–361.

    CAS  PubMed  Google Scholar 

  38. Seoane, L.M., Al-Massadi, O., Pazos, Y., Pagotto, U., and Casanueva, F.F., Central obestatin administration does not modify either spontaneous or ghrelin-induced food intake in rats, J. Endocrinol. Invest., 2006, vol. 29, no. 8, p. RC13–RC15.

    CAS  PubMed  Google Scholar 

  39. Zizzari, P., Longchamps, R., Epelbaum, J., and Bluet-Pajot, M.T., Obestatin partially affects ghrelin stimulation of food intake and growth hormone secretion in rodents, Endocrinology, 2007, vol. 148, no. 4, pp. 1648–1653.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Unniappan, S., Speck, M., and Kieffer, T.J., Metabolic effects of chronic obestatin infusion in rats, Peptides, 2008, vol. 29, no. 8, pp. 1354–1361.

    CAS  PubMed  Google Scholar 

  41. Gao, X.Y., Kuang, H.Y., Liu, X.M., and Bin, Z., Decreased gastric body mucosa obestatin expression in abdominal obesity patients with normal body mass index, Biomed. Environ. Sci., 2014, vol. 27, no. 5, pp. 385–387.

    CAS  PubMed  Google Scholar 

  42. Seim, I., Walpole, C., Amorim, L., Josh, P., Herington, A., and Chopin, L., The expanding roles of the ghrelin-gene derived peptide obestatin in health and disease, Mol. Cell. Endocrinol., 2011, vol. 340, no. 1, pp. 111–117.

    CAS  PubMed  Google Scholar 

  43. Mondal, M.S., Toshinai, K., Ueno, H., Koshinaka, K., and Nakazato, M., Characterization of obestatin in rat and human stomach and plasma, and its lack of acute effect on feeding behavior in rodents, J. Endocrinol., 2008, vol. 198, no. 2, pp. 339–346.

    CAS  PubMed  Google Scholar 

  44. Reinehr, T., De Sousa, G., and Roth, C.L., Obestatin and ghrelin levels in obese children and adolescents before and after reduction of overweight, Clin. Endocrinol. (Oxford), 2008, vol. 68, no. 2, pp. 304–310.

    CAS  Google Scholar 

  45. Ulasoglu, C., Isbilen, B., Doganay, L., Ozen, F., Kiziltas, S., and Tuncer, I., Effect of Helicobacter pylori eradication on serum ghrelin and obestatin levels, World J. Gastroenterol., 2013, vol. 19, no. 15, pp. 2388 –2394.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Huda, M.S.B., Durham, B.H., Wong, S.P., Deepak, D., Kerrigan, D., McCulloch, P., Ranganath, L., Pinkney, J., and Wilding, J.P.H., Plasma obestatin levels are lower in obese and post-gastrectomy subjects, but do not change in response to a meal, Int. J. Obes., 2008, vol. 32, no. 1, pp. 129–135.

    CAS  Google Scholar 

  47. Slupecka, M., Pierzynowski, S.G., Kuwahara, A., Kato, I., and Woliński, J., Age-dependent effect of obestatin on intestinal contractility in Wistar rats, Gen. Comp. Endocrinol., 2014, vol. 208, pp. 109–115.

    CAS  PubMed  Google Scholar 

  48. Squecco, R., Garella, R., Francini, F., and Baccari, M.C., Influence of obestatin on the gastric longitudinal smooth muscle from mice: Mechanical and electrophysiological studies, Am. J. Physiol. Liver Physiol., 2013, vol. 305, no. 9, pp. G628–G637.

    CAS  Google Scholar 

  49. Slupecka-Ziemilska, M., Grzesiak, P., Jank, M., Majewska, A., Rak, A., Kowalczyk, P., Kato, I., Kuwahara, A., and Woliński, J., Small intestinal development in suckling rats after enteral obestatin administration, PLoS One, 2018, vol. 13, no. 10.

  50. Taskin, E., Atli, B., Kiliç, M., Sari, Y., and Aydin, S., Serum, urine, and saliva levels of ghrelin and obestatin pre-and post-treatment in pediatric epilepsy, Pediatr. Neurol., 2014, vol. 51, no. 3, pp. 365–369.

    PubMed  Google Scholar 

  51. Schubert, M.L., Gastric secretion, Curr. Opin. Gastroenterol., 2014, vol. 30, no. 6, pp. 578–582.

    CAS  PubMed  Google Scholar 

  52. Granata, R., Volante, M., Settanni, F., Gauna, C., Ghé, C., Annunziata, M., Deidda, B., Gesmundo, I., Abribat, T., van der Lely, A.J., Muccioli, G., Ghigo, E., and Papotti, M., Unacylated ghrelin and obestatin increase islet cell mass and prevent diabetes in streptozotocin-treated newborn rats, J. Mol. Endocrinol., 2010, vol. 45, no. 1, pp. 9–17.

    CAS  PubMed  Google Scholar 

  53. Baragli, A., Grande, C., Iacopo, G., Settanni, F., Marina, T., Gargantini, E., Ghigo, E., and Granata, R., Obestatin enhances in vitro generation of pancreatic islets through regulation of developmental pathways, PLoS One, 2013, vol. 8, no. 5.

  54. Li, W., Chang, M., Qiu, M., Chen, Y., Zhang, X., Li, Q., and Cui, C., Exogenous obestatin decreases beta-cell apoptosis and alfa-cell proliferation in high fat diet and streptozotocin induced type 2 diabetic rats, Eur. J. Pharmacol., 2019, vol. 851, pp. 36–42.

    CAS  PubMed  Google Scholar 

  55. El-Asfar, R.K., Kamal, M.M., EL-Razek, R.S.A., Ebtehal, E.D., and El-Mesallamy, H.O., Obestatin can potentially differentiate Wharton’s jelly mesenchymal stem cells into insulin-producing cells, Cell Tissue Res., 2018, vol. 372, no. 1, pp. 91–98.

    CAS  PubMed  Google Scholar 

  56. Gao, X.Y., Kuang, H.Y., Liu, X.M., and Ma, Z.B., Decreased gastric body mucosa obestatin expression in overweight and obese patients, Peptides, 2010, vol. 31, no. 2, pp. 291–296.

    CAS  PubMed  Google Scholar 

  57. Sedlackova, D., Kopeckova, J., Papezova, H., Hainer, V., Kvasnickova, H., Hill, M., and Nedvidkova, J., Comparison of a high-carbohydrate and high-protein breakfast effect on plasma ghrelin, obestatin, NPY and PYY levels in women with anorexia and bulimia nervosa, Nutr. Metab., 2012, vol. 9, no. 1, p. 52.

    CAS  Google Scholar 

  58. Büscher, A.K., Cetiner, M., Büscher, R., Wingen, A.M., Hauffa, B.P., and Hoyer, P.F., Obesity in patients with Bardet–Biedl syndrome: Influence of appetite-regulating hormones, Pediatr. Nephrol., 2012, vol. 27, no. 11, pp. 2065–2071.

    PubMed  Google Scholar 

  59. Gutierrez-Grobe, Y., Villalobos-Blasquez, I., Sánchez-Lara, K., Villa, A.R., Ponciano-Rodriguez, G., Ramos, M.H., Chavez-Tapia, N.C., Uribe, M., and Méndez-Sánchez, N., High ghrelin and obestatin levels and low risk of developing fatty liver, Ann. Hepatol., 2010, vol. 9, no. 1, pp. 52–57.

    CAS  PubMed  Google Scholar 

  60. Dembiński, A., Warzecha, Z., Ceranowicz, P., Cieszkowski, J., Dembiński, M., Ptak-Belowska, A., Kuwahara, A., and Kato, I., Administration of obestatin accelerates the healing of chronic gastric ulcers in rats, Med. Sci. Monit., 2011, vol. 17, no. 8, pp. BR196–BR200.

    PubMed  PubMed Central  Google Scholar 

  61. Korkut, S., Özdemir, A., Yay, A.H., Yalçn, B., Ceylan, M., Korkmaz, L., Yazici, C., Güntürk, I., and Kurtoğlu, S., Obestatin reduces intestinal damage in experimental necrotizing enterocolitis in newborn rats, Am. J. Perinatol., 2019, vol. 36, no. 11, pp. 1179–1187.

    PubMed  Google Scholar 

  62. Matuszyk, A., Ceranowicz, P., Warzecha, Z., Cieszkowski, J., Gałazka, K., Bonior, J., Jaworek, J., Konturek, P.C., Gil, K., and Dembinski, A., Pretreatment with obestatin inhibits the development of acetic acid-induced colitis in rats, Arch. Med. Sci., 2018, vol. 14, no. 4, pp. 920–929.

    CAS  PubMed  Google Scholar 

  63. Khaleel, E.F. and Abdel-Aleem, G.A., Obestatin protects and reverses nonalcoholic fatty liver disease and its associated insulin resistance in rats via inhibition of food intake, enhancing hepatic adiponectin signaling, and blocking ghrelin acylation, Arch. Physiol. Biochem., 2019, vol. 125, no. 1, pp. 64–78.

    CAS  PubMed  Google Scholar 

  64. Kanat, B.H., Ayten, R., Aydn, S., Girgin, M., Çetinkaya, Z., Ilhan, Y.S., Yur, M., and Çatak, Z., Significance of appetite hormone ghrelin and obestatin levels in the assessment of the severity of acute pancreatitis, Turk. J. Gastroenterol., 2014, vol. 25, no. 3, pp. 309–313.

    PubMed  Google Scholar 

  65. Nagaraj, S., Peddha, M.S., and Manjappara, U.V., Fragments of obestatin as modulators of feed intake, circulating lipids, and stored fat, Biochem. Biophys. Res. Commun., 2008, vol. 366, no. 3, pp. 731–737.

    CAS  PubMed  Google Scholar 

  66. Brunetti, L., Michelotto, B., Orlando, G., and Vacca, M., Obestatin inhibits dopamine release in rat hypothalamus, Eur. J. Pharmacol., 2010, vol. 641, nos. 2–3, pp. 142–147.

    CAS  PubMed  Google Scholar 

  67. Nogueiras, R., Pfluger, P., Tovar, S., et al., Effects of obestatin on energy balance and growth hormone secretion in rodents, Endocrinology, 2007, vol. 148, no. 1, pp. 21–26.

    CAS  PubMed  Google Scholar 

  68. Gourcerol, G. and Tache, Y., Obestatin: A ghrelin-associated peptide that does not hold its promise to suppress food intake and motility, Neurogastroenterol. Motil., 2007, vol. 19, no. 3, pp. 161–165.

    CAS  PubMed  Google Scholar 

  69. Shen, C., Yu, T., Tang, Z.H., and Wu, K.M., Changes in ghrelin and obestatin levels before and after a meal in children with simple obesity and anorexia, Horm. Res. Paediatr., 2013, vol. 79, no. 6, pp. 341–346.

    CAS  PubMed  Google Scholar 

  70. Zhang, N., Yuan, C., Li, Z., Li, J., Li, X., Li, C., Li, R., and Wang, S.R., Meta-analysis of the relationship between obestatin and ghrelin levels and the ghrelin/obestatin ratio with respect to obesity, Am. J. Med. Sci., 2011, vol. 341, no. 1, pp. 48–55.

    PubMed  Google Scholar 

  71. Aly, G.S., Hassan, N.E., Anwar, G.M., Ahmed, H.H., El-Masry, S.A., El-Banna, R.A., Ahmed, N.H., Kamal, A.N., and Tarkan, R.S., Ghrelin, obestatin and the ghrelin/obestatin ratio as potential mediators for food intake among obese children: A case control study, J. Pediatr. Endocrinol. Metab., 2020, vol. 33, no. 2, pp. 199–204.

    CAS  PubMed  Google Scholar 

  72. Monteleone, P., Serritella, C., Martiadis, V., Scognamiglio, P., and Maj, M., Plasma obestatin, ghrelin, and ghrelin/obestatin ratio are increased in underweight patients with anorexia nervosa but not in symptomatic patients with bulimia nervosa, J. Clin. Endocrinol. Metab., 2008, vol. 93, no. 11, pp. 4418–4421.

    CAS  PubMed  Google Scholar 

  73. Pan, W., Tu, H., and Kastin, A.J., Differential BBB interactions of three ingestive peptides: Obestatin, ghrelin, and adiponectin, Peptides, 2006, vol. 27, no. 4, pp. 911–916.

    CAS  PubMed  Google Scholar 

  74. Sobrino Crespo, C., Perianes Cachero, A., Puebla Jiménez, L., Barrios, V., and Arilla Ferreiro, E., Peptides and food intake, Front. Endocrinol., 2014, vol. 5, p. 58.

    Google Scholar 

  75. Szlis, M. and Wojcik-Gladysz, A., Neuromodulatory action of obestatin on the secretory activity of the hypothalamic-pituitary axis, Zesz. Nauk. Uniw. Szczecin.Acta Biol., 2014, vol. 21, pp. 125–134.

    Google Scholar 

  76. Alén, B.O., Nieto, L., Gurriarán-Rodriguez, U., Mosteiro, C.S., Álvarez-Pérez, J.C., Otero-Alén, M., Camiña, J.P., Gallego, R., Garcia-Caballero, T., and Martin-Pastor, M., The NMR structure of human obestatin in membrane-like environments: Insights into the structure-bioactivity relationship of obestatin, PLoS One, 2012, vol. 7, no. 10.

  77. Gurriarán-Rodriguez, U., Santos-Zas, I., González-Sánchez, J., et al., Action of obestatin in skeletal muscle repair: Stem cell expansion, muscle growth, and microenvironment remodeling, Mol. Ther., 2015, vol. 23, no. 6, pp. 1003–1021.

    PubMed  PubMed Central  Google Scholar 

  78. Szlis, M., Polkowska, J., Skrzeczyńska, E., Przybył, B.J., and Wojcik-Gladysz, A., Does obestatin modulate the hypothalamic appetite-regulating network in peripubertal sheep?, J. Anim. Physiol. Anim. Nutr., 2018, vol. 102, no. 3, pp. 690–700.

    CAS  Google Scholar 

  79. Granata, R., Settanni, F., Gallo, D., Trovato, L., Biancone, L., Cantaluppi, V., Nano, R., Annunziata, M., Campiglia, P., Arnoletti, E., Ghè, C., Volante, M., Papotti, M., Muccioli, G., and Ghigo, E., Obestatin promotes survival of pancreatic β-cells and human islets and induces expression of genes involved in the regulation of β-cell mass and function, Diabetes, 2008, vol. 57, no. 4, pp. 967–979.

    CAS  PubMed  Google Scholar 

  80. Granata, R., Gallo, D., Luque, R.M., et al., Obestatin regulates adipocyte function and protects against diet-induced insulin resistance and inflammation, FASEB J., 2012, vol. 26, no. 8, pp. 3393–3411.

    CAS  PubMed  Google Scholar 

  81. Gargantini, E., Lazzari, L., Settanni, F., Taliano, M., Trovato, L., Gesmundo, I., Ghigo, E., and Granata, R., Obestatin promotes proliferation and survival of adult hippocampal progenitors and reduces amyloid-β-induced toxicity, Mol. Cell. Endocrinol., 2016, vol. 422, pp. 18–30.

    CAS  PubMed  Google Scholar 

  82. Pradhan, G., Wu, C.S., Lee, J.H., Kanikarla, P., Guo, S., Yechoor, V.K., Samson, S.L., and Sun, Y., Obestatin stimulates glucose-induced insulin secretion through ghrelin receptor GHS-R, Sci. Rep., 2017, vol. 7, no. 1, p. 979.

    PubMed  PubMed Central  Google Scholar 

  83. Szakács, J., Csabafi, K., Lipták, N., and Szabó, G., The effect of obestatin on anxiety-like behaviour in mice, Behav. Brain Res., 2015, vol. 293, pp. 41–45.

    PubMed  Google Scholar 

  84. Fekete, E.M., Zhao, Y., Szucs, A., Sabino, V., Cottone, P., Rivier, J., Vale, W.W., Koob, G.F., and Zorrilla, E.P., Systemic urocortin 2, but not urocortin 1 or stressin1-a, suppresses feeding via crf2 receptors without malaise and stress, Br. J. Pharmacol., 2011, vol. 164, no. 8, pp. 1959–1975.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ataka, K., Inui, A., Asakawa, A., Kato, I., and Fujimiya, M., Obestatin inhibits motor activity in the antrum and duodenum in the fed state of conscious rats, Am. J. Physiol. Liver Physiol., 2008, vol. 294, no. 5, pp. G1210–G1218.

    CAS  Google Scholar 

  86. Wellman, P.J., Modulation of eating by central catecholamine systems, Curr. Drug Targets, 2005, vol. 6, no. 2, pp. 191–199.

    CAS  PubMed  Google Scholar 

  87. Tecott, L.H., Serotonin and the orchestration of energy balance, Cell Metab., 2007, vol. 6, no. 5, pp. 352–361.

    CAS  PubMed  Google Scholar 

  88. Brunetti, L., Michelotto, B., Orlando, G., and Vacca, M., Leptin inhibits norepinephrine and dopamine release from rat hypothalamic neuronal endings, Eur. J. Pharmacol., 1999, vol. 372, no. 3, pp. 237–240.

    CAS  PubMed  Google Scholar 

  89. Brunetti, L., Recinella, L., Orlando, G., Michelotto, B., Di Nisio, C., and Vacca, M., Effects of ghrelin and amylin on dopamine, norepinephrine and serotonin release in the hypothalamus, Eur. J. Pharmacol., 2002, vol. 454, nos. 2–3, pp. 189–192.

    CAS  PubMed  Google Scholar 

  90. Brunetti, L., Orlando, G., Ferrante, C., Chiavaroli, A., and Vacca, M., Peptide YY (3–36) inhibits dopamine and norepinephrine release in the hypothalamus, Eur. J. Pharmacol., 2005, vol. 519, nos. 1–2, pp. 48–51.

    CAS  PubMed  Google Scholar 

  91. Motorykina, E.S., Khirazova, E.E., Maslova, M.V., Maklakova, A.S., Graf, A.V., Bayzhymanov, A.A., Kurko, O.D., Zamyatina, L.A., Andreyeva, L.A., Sokolova, N.A., Myasoyedov, N.F., and Kamenskii, A.A., Changes in feeding and drinking motivations and glucose content in male rats after single or chronic administration of obestatin or its fragment (1–4), Dokl. Biol. Sci., 2015, vol. 460, pp. 1–4.

    CAS  PubMed  Google Scholar 

  92. Samson, W.K., Yosten, G.L.C., Chang, J.K., Ferguson, A.V., and White, M.M., Obestatin inhibits vasopressin secretion: Evidence for a physiological action in the control of fluid homeostasis, J. Endocrinol., 2008, vol. 196, no. 3, pp. 559–564.

    CAS  PubMed  Google Scholar 

  93. Agnew, A., Calderwood, D., Chevallier, O.P., Greer, B., Grieve, D.J., and Green, B.D., Chronic treatment with a stable obestatin analog significantly alters plasma triglyceride levels but fails to influence food intake; fluid intake; body weight; or body composition in rats, Peptides, 2011, vol. 32, no. 4, pp. 755–762.

    CAS  PubMed  Google Scholar 

  94. Bliss, E.S. and Whiteside, E., The gut-brain axis, the human gut microbiota and their integration in the development of obesity, Front. Physiol., 2018, vol. 9.

  95. Fujimiya, M., Ataka, K., Asakawa, A., Chen, C.Y., Kato, I., and Inui, A., Regulation of gastroduodenal motility: Acyl ghrelin, des-acyl ghrelin and obestatin and hypothalamic peptides, Digestion, 2012, vol. 85, no. 2, pp. 90–94.

    CAS  PubMed  Google Scholar 

  96. Chen, C.Y., Lee, W.J., Chong, K., Lee, S.D., and Liao, Y.D., Impact of intracerebroventricular obestatin on plasma acyl ghrelin, des-acyl ghrelin and nesfatin-1 levels, and on gastric emptying in rats, Mol. Med. Rep., 2012, vol. 6, no. 1, pp. 191–196.

    CAS  PubMed  Google Scholar 

  97. Bassil, A.K., Häglund, Y., Brown, J., Rudholm, T., Hellström, P.M., Näslund, E., Lee, K., and Sanger, G.J., Little or no ability of obestatin to interact with ghrelin or modify motility in the rat gastrointestinal tract, Br. J. Pharmacol., 2007, vol. 150, no. 1, pp. 58–64.

    CAS  PubMed  Google Scholar 

  98. Grande, C., Gesmundo, I., Settanni, F., Taliano, M., Gallo, D., Gargantini, E., Ghigo, E., and Granata, R., Obestatin enhances in vitro generation of pancreatic islets through regulation of developmental pathways, PLoS One, 2013, vol. 8, no. 5.

  99. Ren, A.J., Guo, Z.F., Wang, Y.K., Wang, L.G., Wang, W.Z., Lin, L., Zheng, X., and Yuan, W.J., Inhibitory effect of obestatin on glucose-induced insulin secretion in rats, Biochem. Biophys. Res. Commun., 2008, vol. 369, no. 3, pp. 969–972.

    CAS  PubMed  Google Scholar 

  100. Gao, X.Y., Kuang, H.Y., Liu, X.M., Wang, X.Y., Pan, Y.H., and Ma, X.X., Decreased obestatin in plasma in metabolically obese, normal-weight men with normal glucose tolerance, Diabetes Res. Clin. Pract., 2008, vol. 79, no. 1, pp. e5–e6.

    PubMed  Google Scholar 

  101. Fujimiya, M., Asakawa, A., Ataka, K., Kato, I., and Inui, A., Different effects of ghrelin, des-acyl ghrelin and obestatin on gastroduodenal motility in conscious rats, World J. Gastroenterol., 2008, vol. 14, no. 41, pp. 6318–6326.

    PubMed  PubMed Central  Google Scholar 

  102. Morley, J.E., Farr, S.A., Sell, R.L., Hileman, S.M., and Banks, W.A., Nitric oxide is a central component in neuropeptide regulation of appetite, Peptides, 2011, vol. 32, no. 4, pp. 776–780.

    CAS  PubMed  Google Scholar 

  103. Agnew, A.J., Robinson, E., McVicar, C.M., Harvey, A.P., Ali, I.H.A., Lindsay, J.E., McDonald, D.M., Green, B.D., and Grieve, D.J., The gastrointestinal peptide obestatin induces vascular relaxation via specific activation of endothelium-dependent NO signalling, Br. J. Pharmacol., 2012, vol. 166, no. 1, pp. 327–338.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Penna, C., Tullio, F., Femmino, S., Rocca, C., Angelone, T., Cerra, M.C., Gallo, M.P., Gesmundo, I., Fanciulli, A., Brizzi, M.F., Pagliaro, P., Alloatti, G., and Granata, R., Obestatin regulates cardiovascular function and promotes cardioprotection through the nitric oxide pathway, J. Cell. Mol. Med., 2017, vol. 21, no. 12, pp. 3670–3678.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Vergote, V., Baert, B., Vandermeulen, E., Peremans, K., van Bree, H., Slegers, G., Burvenich, C., and De Spiegeleer, B., LC-UV/MS characterization and DOE optimization of the iodinated peptide obestatin, J. Pharm. Biomed. Anal., 2008, vol. 46, no. 1, pp. 127–136.

    CAS  PubMed  Google Scholar 

  106. Khirazova, E.E., Maslova, M.V., Motorykina, E.S., Frid, D.A., Graf, A.V., Maklakova, A.S., Sokolova, N.A., and Kamenskii, A.A., Effects of single intranasal administration of obestatin fragments on the body weight and feeding and drinking behaviors, Dokl. Biol. Sci., 2013, vol. 453, no. 1, pp. 336–337.

    CAS  PubMed  Google Scholar 

  107. Subasinghage, A.P., Green, B.D., Flatt, P.R., Irwin, N., and Hewage, C.M., Metabolic and structural properties of human obestatin {1-23} and two fragment peptides, Peptides, 2010, vol. 31, no. 9, pp. 1697–1705.

    CAS  PubMed  Google Scholar 

  108. Motorykina, E.S., Khirazova, E.E., Maslova, M.V., Graf, A.V., Maklakova, A.S., Bayzhymanov, A.A., Kurko, O.D., Andreyeva, L.A., Sokolova, N.A., Myasoyedov, N.F., and Kamenskii, A.A., Changes in behavior and blood corticosterone level in male and female rats after single administration of obestatin fragment 1-4, Bull. Exp. Biol. Med., 2016, vol. 161, no. 2, pp. 218–220.

    CAS  PubMed  Google Scholar 

Download references

Funding

The reported study was funded by Russian Foundation for Basic Research, project number 19-115-50398.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Maslova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by M. Batrukova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graf, A.V., Khirazova, E.E., Maslova, M.V. et al. Obestatin and Its Fragments: A New Approach to the Regulation of Body Weight under Normal and Pathological Conditions. Moscow Univ. Biol.Sci. Bull. 75, 50–64 (2020). https://doi.org/10.3103/S0096392520020042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0096392520020042

Keywords:

Navigation