Skip to main content
Log in

Diaphragm: The Relationship between Blood Supply Regulation and Characteristics of the Contractile Function

  • REVIEW
  • Published:
Moscow University Biological Sciences Bulletin Aims and scope Submit manuscript

Abstract

The diaphragm is a unique skeletal muscle; it is active throughout the lifetime and, therefore, differs from locomotor muscles in the properties of muscle fibers and the mechanisms of blood supply control. The aim of this review was to survey the structural characteristics of diaphragm muscle tissue, which provide its integral contractile properties; to compare the activity of vascular tone control mechanisms in the diaphragm and locomotor muscles; and to explore their relationship with the regulation of contractile function. The diaphragm differs from the majority of skeletal muscles by a high content of both slow fatigue-resistant muscle fibers of type I and fast fibers of type IIb, which provides endurance and high force-velocity characteristics of the diaphragm. The muscle fibers in the diaphragm are smaller, and the density of capillarization is much higher than in locomotor muscles. Arteries and arterioles that regulate blood supply to the diaphragm capillary bed combine the properties of arteries from muscles composed mainly of oxidative or mainly of glycolytic fibers. Such variety provides blood flow in the diaphragm adequate to its functional load with various patterns of activity. The mechanisms of vasoregulation in the diaphragm can qualitatively differ in the proximal and distal parts of the vascular bed. The functional properties of the proximal arteries can in part be explained by their proximity to the aorta and their small length. The contractile characteristics and blood supply of the diaphragm in various conditions should be considered when conducting respiratory muscle training in sports and rehabilitation medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Fogarty, M.J. and Sieck, G.C., Evolution and functional differentiation of the diaphragm muscle of mammals, Compr. Physiol., 2019, vol. 9, no. 2, pp. 715–766.

    PubMed  PubMed Central  Google Scholar 

  2. Manohar, M., Costal vs. crural diaphragmatic blood flow during submaximal and near-maximal exercise in ponies, J. Appl. Physiol., 1988, vol. 65, no. 4, pp. 1514–1519.

    CAS  PubMed  Google Scholar 

  3. Kirkton, S.D., Howlett, R.A., Gonzalez, N.C., Giuliano, P.G., Britton, S.L., Koch, L.G., Wagner, H.E., and Wagner, P.D., Continued artificial selection for running endurance in rats is associated with improved lung function, J. Appl. Physiol., 2009, vol. 106, no. 6, pp. 1810–1818.

    PubMed  PubMed Central  Google Scholar 

  4. Rosser-Stanford, B., Backx, K., Lord, R., and Williams, E.M., Static and dynamic lung volumes in swimmers and their ventilatory response to maximal exercise, Lung, 2019, vol. 197, no. 1, pp. 15–19.

    PubMed  Google Scholar 

  5. Neder, J.A., Dal, CorsoS., Malaguti, C., Reis, S., De Fuccio, M.B., Schmidt, H., Fuld, J.P., and Nery, L.E., The pattern and timing of breathing during incremental exercise: A normative study, Eur. Respir. J., 2003, vol. 21, no. 3, pp. 530–538.

    CAS  PubMed  Google Scholar 

  6. Fogarty, M.J., Mantilla, C.B., and Sieck, G.C., Breathing: Motor control of diaphragm muscle, Physiology (Bethesda), 2018, vol. 33, no. 2, pp. 113–126.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Schiaffino, S. and Reggiani, C., Fiber types in mammalian skeletal muscles, Physiol. Rev., 2011, vol. 91, no. 4, pp. 1447–1531.

    CAS  PubMed  Google Scholar 

  8. Schiaffino, S., Sandri, M., and Murgia, M., Activity-dependent signaling pathways controlling muscle diversity and plasticity, Physiology (Bethesda), 2007, vol. 22, no. 4, pp. 269–278.

    CAS  PubMed  Google Scholar 

  9. Bloemberg, D. and Quadrilatero, J., Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis, PLoS One, 2012, vol. 7, no. 4.

  10. Delp, M.D. and Duan, C., Composition and size of type I, IIA, IID/X, and IIB fibers and citrate synthase activity of rat muscle, J. Appl. Physiol., 1996, vol. 80, no. 1, pp. 261–270.

    CAS  PubMed  Google Scholar 

  11. Tarasova, O.S., Kalenchuk, V.U., Borzykh, A.A., Andreev-Andrievsky, A.A, Buravkov, S.V., Sharova, A.P., and Vinogradova, O.L., A comparative analysis of the vasomotor responses and innervation of small arteries in rat locomotor and respiratory muscles, Biophysics, 2008, vol. 53, pp. 621–625.

    Google Scholar 

  12. Borzykh, A.A., Andreev-Andrievskiy, A.A., Kalenchuk, V.U., Mochalov, S.V., Buravkov, S.V., Kuzmin, I.V., Borovik, A.S., Vinogradova, O.L., and Tarasova, O.S., Strategies of adaptation of small arteries in diaphragm and gastrocnemius muscle to aerobic exercise training, Hum. Physiol., 2017, vol. 43, no. 4, pp. 437–445.

    CAS  Google Scholar 

  13. Metzger, J.M., Scheidt, K.B., and Fitts, R.H., Histochemical and physiological characteristics of the rat diaphragm, J. Appl. Physiol., 1985, vol. 58, no. 4, pp. 1085–1091.

    CAS  PubMed  Google Scholar 

  14. Borzykh, A.A., Gainullina, D.K., Kuz’min, I.V., Sharova, A.P., Tarasova, O.S., and Vinogradova, O.L., Comparative analysis of gene expression in locomotor muscles and rat diaphragm, Ross. Fiziol. Zh. im. I.M. Sechenova, 2012, vol. 98, no. 12, pp. 1587–1594.

    CAS  PubMed  Google Scholar 

  15. Uribe, J.M., Stump, C.S., Tipton, C.M., and Fregosi, R.F., Influence of exercise training on the oxidative capacity of rat abdominal muscles, Respir. Physiol., 1992, vol. 88, nos. 1–2, pp. 171–180.

    CAS  PubMed  Google Scholar 

  16. Metzger, J.M. and Fitts, R.H., Contractile and biochemical properties of diaphragm: Effects of exercise training and fatigue, J. Appl. Physiol., 1986, vol. 60, no. 5, pp. 1752–1758.

    CAS  PubMed  Google Scholar 

  17. Popov, D.V., Adaptation of skeletal muscles to contractile activity of varying duration and intensity: The role of PGC-1α, Biochemistry (Moscow), 2018, vol. 83, no. 6, pp. 613–628.

    CAS  PubMed  Google Scholar 

  18. Suzuki, J., Microvascular remodelling after endurance training with Co2+ treatment in the rat diaphragm and hind-leg muscles, Jpn. J. Physiol., 2002, vol. 52, no. 5, pp. 409–419.

    CAS  PubMed  Google Scholar 

  19. Gute, D., Fraga, C., Laughlin, M.H., and Amann, J.F., Regional changes in capillary supply in skeletal muscle of high-intensity endurance-trained rats, J. Appl. Physiol., 1996, vol. 81, no. 2, pp. 619–626.

    CAS  PubMed  Google Scholar 

  20. Green, H.J., Plyley, M.J., Smith, D.M., and Kile, J.G., Extreme endurance training and fiber type adaptation in rat diaphragm, J. Appl. Physiol., 1989, vol. 66, no. 4, pp. 1914–1920.

    CAS  PubMed  Google Scholar 

  21. Gosselin, L.E., Betlach, M., Vailas, A.C., and Thomas, D.P., Training-induced alterations in young and senescent rat diaphragm muscle, J. Appl. Physiol., 1992, vol. 72, no. 4, pp. 1506–1511.

    CAS  PubMed  Google Scholar 

  22. Domínguez-Álvarez, M., Gea, J., and Barreiro, E., Inflammatory events and oxidant production in the diaphragm, gastrocnemius, and blood of rats exposed to chronic intermittent hypoxia: therapeutic strategies, J. Cell Physiol., 2017, vol. 232, no. 5, pp. 1165–1175.

    PubMed  Google Scholar 

  23. Armstrong, R.B. and Laughlin, M.H., Metabolic indicators of fibre recruitment in mammalian muscles during locomotion, J. Exp. Biol., 1985, vol. 115, pp. 201–213.

    CAS  PubMed  Google Scholar 

  24. Joyner, M.J. and Casey, D.P., Regulation of increased blood flow (hyperemia) to muscles during exercise: A hierarchy of competing physiological needs, Physiol. Rev., 2015, vol. 95, no. 2, pp. 549–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Murrant, C.L. and Sarelius, I.H., Local control of blood flow during active hyperaemia: What kinds of integration are important?, J. Physiol., 2015, vol. 593, no. 21, pp. 4699–4711.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Sexton, W.L. and Poole, D.C., Costal diaphragm blood flow heterogeneity at rest and during exercise, Respir. Physiol., 1995, vol. 101, no. 2, pp. 171–182.

    CAS  PubMed  Google Scholar 

  27. Laughlin, M.H. and Armstrong, R.B., Rat muscle blood flows as a function of time during prolonged slow treadmill exercise, Am. J. Physiol., 1983, vol. 244, no. 6, pp. H814–824.

    CAS  PubMed  Google Scholar 

  28. Sarelius, I. and Pohl, U., Control of muscle blood flow during exercise: Local factors and integrative mechanisms, Acta Physiol. (Oxford), 2010, vol. 199, no. 4, pp. 349–365.

    CAS  Google Scholar 

  29. Bagher, P. and Segal, S.S., Regulation of blood flow in the microcirculation: Role of conducted vasodilation, Acta Physiol., 2011, vol. 202, no. 3, pp. 271–284.

    CAS  Google Scholar 

  30. Mel'kumyants, A.M., On the role of endothelial glycocalyx in the mechanogenic regulation of arterial resistance, Usp. Fiziol. Nauk, 2012, vol. 43, no. 4, pp. 45–58.

    CAS  Google Scholar 

  31. Fixler, D.E., Atkins, J.M., Mitchell, J.H., and Horwitz, L.D., Blood flow to respiratory, cardiac, and limb muscles in dogs during graded exercise, Am. J. Physiol., 1976, vol. 231, no. 5, pp. 1515–1519.

    CAS  PubMed  Google Scholar 

  32. Manohar, M., Inspiratory and expiratory muscle perfusion in maximally exercised ponies, J. Appl. Physiol., 1990, vol. 68, no. 2, pp. 544–548.

    CAS  PubMed  Google Scholar 

  33. Nobrega, A.C.L., O’Leary, D., Silva, B.M., Marongiu, E., Piepoli, M.F., and Crisafulli, A., Neural regulation of cardiovascular response to exercise: Role of central command and peripheral afferents, Biomed Res. Int., 2014, vol. 2014, p. 478965.

    PubMed  PubMed Central  Google Scholar 

  34. O’Leary, D.S., Robinson, E.D., and Butler, J.L., Is active skeletal muscle functionally vasoconstricted during dynamic exercise in conscious dogs?, Am. J. Physiol., 1997, vol. 272, no. 1, pp. R386–R391.

    PubMed  Google Scholar 

  35. Manohar, M., Vasodilator reserve in respiratory muscles during maximal exertion in ponies, J. Appl. Physiol., 1986, vol. 60, no. 5, pp. 1571–1577.

    CAS  PubMed  Google Scholar 

  36. Sheel, A.W., Boushel, R., and Dempsey, J.A., Competition for blood flow distribution between respiratory and locomotor muscles: Implications for muscle fatigue, J. Appl. Physiol., 2018, vol. 125, no. 3, pp. 820–831.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Dempsey, J.A., Romer, L., Rodman, J., Miller, J., and Smith, C., Consequences of exercise-induced respiratory muscle work, Respir. Physiol. Neurobiol., 2006, vol. 151, nos. 2–3, pp. 242–250.

    PubMed  Google Scholar 

  38. Laughlin, M.H. and Armstrong, R.B., Adrenoreceptor effects on rat muscle blood flow during treadmill exercise, J. Appl. Physiol., 1987, vol. 62, no. 4, pp. 1465–1472.

    CAS  PubMed  Google Scholar 

  39. Behnke, B.J., Armstrong, R.B., and Delp, M.D., Adrenergic control of vascular resistance varies in muscles composed of different fiber types: Influence of the vascular endothelium, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2011, vol. 301, no. 3, pp. R783–R790.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hilton, S.M., Jeffries, M.G., and Vrbová, G., Functional specializations of the vascular bed of soleus, J.  Physiol., 1970, vol. 206, no. 3, pp. 543–562.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Aaker, A. and Laughlin, M.H., Diaphragm arterioles are less responsive to alpha1-adrenergic constriction than gastrocnemius arterioles, J. Appl. Physiol., 2002, vol. 92, no. 5, pp. 1808–1816.

    CAS  PubMed  Google Scholar 

  42. Laughlin, M.H., Woodman, C.R., Schrage, W.G., Gute, D., and Price, E.M., Interval sprint training enhances endothelial function and eNOS content in some arteries that perfuse white gastrocnemius muscle, J. Appl. Physiol., 2004, vol. 96, no. 1, pp. 233–244.

    CAS  PubMed  Google Scholar 

  43. Van Teeffelen, J.W.G.E. and Segal, S.S., Interaction between sympathetic nerve activation and muscle fibre contraction in resistance vessels of hamster retractor muscle, J. Physiol., 2003, vol. 550, no. 2, pp. 563–574.

    CAS  Google Scholar 

  44. McCurdy, M.R., Colleran, P.N., Muller-Delp, J., and Delp, M.D., Effects of fiber composition and hindlimb unloading on the vasodilator properties of skeletal muscle arterioles, J. Appl. Physiol., 2000, vol. 89, no. 1, pp. 398–405.

    CAS  PubMed  Google Scholar 

  45. Schwartz, L.M. and McKenzie, J.E., Adenosine and active hyperemia in soleus and gracilis muscle of cats, Am. J. Physiol., 1990, vol. 259, no. 4, pp. H1295–H1304.

    CAS  PubMed  Google Scholar 

  46. Muller-Delp, J.M., Spier, S.A., Ramsey, M.W., and Delp, M.D., Aging impairs endothelium-dependent vasodilation in rat skeletal muscle arterioles, Am. J. Physiol. Heart Circ. Physiol., 2002, vol. 283, no. 4, pp. H1662–H1672.

    CAS  PubMed  Google Scholar 

  47. Aaker, A. and Laughlin, M.H., Differential adenosine sensitivity of diaphragm and skeletal muscle arterioles, J. Appl. Physiol., 2002, vol. 93, no. 3, pp. 848–856.

    CAS  PubMed  Google Scholar 

  48. Gainullina, D.K., Kiryukhina, O.O., and Tarasova, O.S., Nitric oxide in vascular endothelium: Production regulation and mechanisms of action, Usp. Fiziol. Nauk, 2013, vol. 44, no. 4, pp. 88–102.

    Google Scholar 

  49. McAllister, R.M., Endothelium-dependent vasodilation in different rat hindlimb skeletal muscles, J. Appl. Physiol., 2003, vol. 94, no. 5, pp. 1777–1784.

    CAS  PubMed  Google Scholar 

  50. Copp, S.W., Holdsworth, C.T., Ferguson, S.K., Hirai, D.M., Poole, D.C., and Musch, T.I., Muscle fibre-type dependence of neuronal nitric oxide synthase-mediated vascular control in the rat during high speed treadmill running, J. Physiol., 2013, vol. 591, no. 11, pp. 2885–2896.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Shipley, R.D., Kim, S.J., and Muller-Delp, J.M., Time course of flow-induced vasodilation in skeletal muscle: Contributions of dilator and constrictor mechanisms, Am. J. Physiol. Heart Circ. Physiol., 2005, vol. 288, no. 4, pp. H1499–H1507.

    CAS  PubMed  Google Scholar 

  52. Aleksandrova, N.P., Baranov, V.M., Tikhonov, M.A., Kolesnikov, V.I., Kotov, A.N., and Kochanov, V.S., Effect of antiorthostatic hypokinesia on the functional state of the diaphragm in rats, Ross. Fiziol. Zh. im. I.M. Sechenova, 2005, vol. 91, no. 11, pp. 1312–1319.

    CAS  PubMed  Google Scholar 

  53. Neder, J.A., Marillier, M., Bernard, A., Matthew, J.D., Kathryn, M.M., and O’Donnell, D.E., The integrative physiology of exercise training in patients with COPD, COPD, 2019, vol. 16, no. 2, pp. 182–195.

    PubMed  Google Scholar 

  54. Illi, S.K., Held, U., Frank, I., and Spengler, C.M., Effect of respiratory muscle training on exercise performance in healthy individuals: A systematic review and meta-analysis, Sports Med., 2012, vol. 42, no. 8, pp. 707–724.

    PubMed  Google Scholar 

Download references

Funding

The review was written with the financial support of the Russian Science Foundation (project no. 19-75-00060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Borzykh.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by I. Shipounova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borzykh, A.A., Vinogradova, O.L. & Tarasova, O.S. Diaphragm: The Relationship between Blood Supply Regulation and Characteristics of the Contractile Function. Moscow Univ. Biol.Sci. Bull. 75, 41–49 (2020). https://doi.org/10.3103/S0096392520020029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0096392520020029

Keywords:

Navigation