Skip to main content
Log in

Principles of Building Systems with Concentrated Solar Energy

  • SOLAR POWER CONCENTRATORS
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract

Design methods and mathematical models for calculating the characteristics of solar module concentrators with specified optical energy parameters have been developed and investigated. These parameters increase the efficiency of solar power plants operating both in a stationary mode and with a tracking system. Modules with parabolic concentrators, linear and cylindrical photodetectors were used in stationary and solar-tracking arrays. The basic structural and functional parameters of solar modules, the concentration and distribution of concentrated solar radiation over the focal spot width depending on the parametric angle based on the lower and upper parabolas were calculated using physical and mathematical models and derived universal analytical expressions. The given characteristics show possible variants of the dependence of the geometric concentration on the parametric angle of the concentrator for different values of the parameters of the universal analytical equation. The dependences of the geometric concentration on the parametric angle of parabolic concentrators are calculated for different values of the structural parameters: the profile of the module of two conjugate compound concentrators; the concentration distribution along the receiver from the upper and lower concentrators and the module as a whole; and the distribution of illumination along the lateral surface of a cylindrical solar radiation receiver. It is shown that the ratio of the experimental concentrations to the calculated characteristics agrees with the optical efficiency of the modules. The above calculation methods based on the principles of constructing systems with concentrated solar energy allow a comparative analysis of the parameters and the choice of the design of various types of concentrators for the solar modules being developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Bezrukikh, P.P., Arbuzov, Yu.D., Borisov, G.A., et al., Resursy i effektivnost’ ispol’zovaniya vozobnovlyaemykh istochnikov energii: monografiya (Resources and Efficiency of Renewable Energy Sources), St. Petersburg: Nauka, 2002.

  2. Vissarionov, V.I., Deryugin, G.V., Kuznetsova, V.A., and Malinin, N.K., Solnechnaya energetika: monografiya (Solar Energetics), Moscow: Izd. Dom Mosk. Energ. Inst., 2011.

  3. Abdurakhmanov, A.A., Kuchkarov, A.A., Mamatkosimov, M.A., and Akhadov, Zh.Z., The optimization of the optical-geometric characteristics of mirror concentrating systems, Appl. Sol. Energy, 2014, vol. 50, no. 4, pp. 244–251.

    Article  Google Scholar 

  4. Valmiki, M.M., Li, P.W., Heyer, J., et al., A novel application of a Fresnel lens for a solar stove and solar heating, Renewable Energy, 2011, vol. 36, no. 5, pp. 1614–1620.

    Article  Google Scholar 

  5. Renno, C. and Petito, F., Energy analysis of a concentrating photovoltaic thermal (CPV/T) system, Energy Sci. Technol., 2013, vol. 6, no. 2, pp. 53–63.

    Google Scholar 

  6. Kasaeian, A.B., Akhlaghi, M.M., Golzari, S., and Dehghani, M., Modeling and optimization of an air-cooled photovoltaic thermal (PV/T) system using genetic algorithms, Appl. Sol. Energy, 2013, vol. 49, no. 4, pp. 215–224.

    Article  Google Scholar 

  7. Trushevskii, S.N., Brief overview of the development and implementation of solar panels abroad and in Russia, Innov. Sel. Khoz., 2016, vol. 20, no. 5, pp. 452–458.

    Google Scholar 

  8. Baranov, V.K., Parabolic mirrors as elements of solar concentrators, Geliotekhnika, 1966, no. 3, pp. 11–14.

  9. Baranov, V.K., Braslavskaya, M.V., and Pozharskii, V.N., Energy characteristics of compound conical and cylindrical concentrators with a parabolic generator, Vsesoyuznaya konferentsiya “Ispol’zovanie solnechnoi energii” (All-Union Conf. on the Use of Solar Energy), Erevan, 1969, vol. 3, pp. 271–289.

    Google Scholar 

  10. Baum, I.V., Braslavskaya, M.V., and Baranov, V.K., Energy characteristics of compound conical and cylindrical concentrators with a parabolic generator, Vsesoyuznaya konferentsiya “Ispol’zovanie solnechnoi energii” (All-Union Conf. on the Use of Solar Energy), Ashgabat, 1977, vol. 2, pp. 169–171.

    Google Scholar 

  11. Baranov, V.K., Parabolotoric compound conical concentrator as a secondary solar concentrator, Geliotekhnika, 1977, no. 5, pp. 18–25.

  12. Baum, I.V. and Mamedniyazov, S.O., Comparative analysis of irradiation field formation models in wide-aperture optical systems, Geliotekhnika, 1977, no. 5, pp. 26–36.

  13. Baranov, V.K., New radiation concentrators and prospects for their use in optics and solar technology, Trudy Gos. Opt. Inst.im.S.I. Vavilova, 1979, vol. 45, no. 179, pp. 57–70.

    Google Scholar 

  14. Zakhidov, R.A., Ogneva, T.A., Klychev Sh.I., et al., Study of the energy characteristics of compound parabolic concentrators, Geliotekhnika, 1984, no. 3, pp. 30–33.

  15. Akhmedov, Kh., Zakhidov, R.A., Ibragimova, N.S., and Klychev, Sh.I., Optical energy characteristics of a compound linear concentrator, Geliotekhnika, 1991, no. 4, pp. 42–45.

  16. Klychev, Sh.I., Ismanzhanov, A.I., Bokoev K., et al., Evaluation of the concentrating characteristics of a classic compound concentrator and cone for use in a solar-geothermal heat supply system of an individual rural house, Tr. 6-i Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii “Energoobespechenie i energosnabzhenie v sel’skom khozyaistve” (Proc. 6th Int. Scientific and Technical Conference on Energy Supply in Agriculture), Moscow: Vseross. Inst. Elektrif. Sel’. Khoz., 2008, part 4, pp. 238–244.

  17. Anaberdyev, E.A. and Baum, I.V., Problems of computational geometry in optics of electric power supply systems, Geliotekhnika, 1989, no. 1, pp. 31–35.

  18. Maiorov, V.A., Strebkov, D.S., and Tver’yanovich, E.V., Solar photovoltaic module, RF Patent 2411422, Byull. Izobret., 2011, no. 8.

  19. Strebkov, D.S., Irodionov, A.E., and Filippchenkova, N.S., Nontracking solar concentrators with louver heliostats: Bar-to-bar effects, Appl. Sol. Energy, 2015, vol. 51. no. 4, pp. 306–310.

    Article  Google Scholar 

  20. Fangman, J.S., Fangman, M.E., Fangman, J.M., et al., Solar concentrator configuration with improved manufacturability and efficiency, US Patent 2011/0017269A1, 2011.

  21. Butler, B.L., Davenport, R.L., and Nemazi, J.E., Solar collector, US Patent 2011/0179791A1, 2011.

  22. Kinley, R.J., Two-stage solar concentrating system, US Patent 2011/0259318A1, 2011.

  23. Gandemi, R., Solar power collector, US Patent 2009/0205636A1, 2009.

  24. Goldstein, A., Feuermann, D., Conley, G., and Gordon, J.M., Compact nested aplanatic optics for concentrator photovoltaics, ISES Solar World Congress (Kassel, Germany, Aug. 28–Sept. 2, 2011), Kassel, 2011.

  25. Klychev, Sh.I., Zakhidov, R.A., Khuzhanov, R., et al., Modeling and calculation of energy characteristics of the solar radiation linear concentrators, Appl. Sol. Energy, 2012, vol. 48, no. 4, pp. 269–274.

    Article  Google Scholar 

  26. Abdurakhmanov, A., Kuchkarov, A.A., Mamatkosimov, M.A., et al., Analytical approaches of calculation of the density distribution of radiant flux from the sun for parabolic–cylindrical mirror-concentrating systems, Appl. Sol. Energy, vol. 52, no. 2, pp. 137–140.

  27. Maiorov, V.A., Comparative characteristics of cylindrical stationary concentrators, 4 Mezhdunarodnaya konferentsiya “Vozobnovlyaemaya i malaya energetika”: Tezisy dokladov (4th Int. Conf. on Renewable and Small Energy: Abstracts of Papers), Moscow, 2007, pp. 76–81.

  28. Maiorov, V.A., Tver’yanovich, E.V., and Lukashik, L.N., Analysis of the optimal parameters of stationary u-shaped and other cylindrical concentrators of solar radiation, Vestn. Vseross. Inst. Elektrif. Sel’.Khoz., 2008, vol. 3, no. 1, pp. 91–95.

    Google Scholar 

  29. Maiorov, V.A. and Tver’yanovich, E.V., Constructive characteristics of cylindrical stationary concentrators, Tr. 6-i Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii “Energoobespechenie i energosnabzhenie v sel’skom khozyaistve” (Proc. 6th Int. Scientific and Technical Conf. on Energy Supply in Agriculture), Moscow: Vseross. Inst. Elektrif. Sel’. Khoz., 2008, vol. 4, pp. 105–111.

  30. Strebkov, D.S. and Tver’yanovich, E.V., Kontsentratory solnechnogo izlucheniya (Solar Radiation Concentrators), Moscow: Yurait, 2019.

  31. Maiorov, V.A. and Panchenko, V.A., Production and research of a compound parabolotoric solar concentrator for various solar energy converters, Tr. 6-i Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii “Energoobespechenie i energosnabzhenie v sel’skom khozyaistve” (Proc. 6th Int. Scientific and Technical Conf. on Energy Supply in Agriculture), Moscow: Vseross. Inst. Elektrif. Sel’. Khoz., 2012, vol. 4, pp. 115–118.

  32. Maiorov, V.A., Panchenko, V.A., Trushevskii, S.N., and Trubnikov, V.Z., Thermal photovoltaic module with parabolotoric solar concentrator, RF Patent 132258, Byull. Izobret., 2013, no. 25.

  33. Strebkov, D.S., Maiorov, V.A., and Panchenko, V.A., Solar module with parabolotoric concentrator and photovoltaic receiver, Energetik, 2013, no. 5, pp. 115–118.

  34. Arbuzov, Yu.D., Evdokimov, V.M., and Puzakov, V.N., Optimization of solar photovoltaic converter systems with radiation concentrators, Geliotekhnika, 2006, no. 1, pp. 3–18.

Download references

ACKNOWLEDGMENTS

The author is grateful to E.V. Tver’yanovich for stating the question of the formation of conical, wedged, and other types of concentrators by analytical methods of deriving equations that make it possible, by changing the structural parameters, to determine the geometric concentration depending on the parametric angle. The author would also like to thank the reviewers and editors of the Geliotekhnika journal for their careful attention to this article.

Funding

The study was performed as part of state subject 0581-2019-0006-01 Determination of Parameters, Equipment Composition, Operating Modes, and Development of a Functional–Technological Scheme of a System for Collecting Data and Processing Information from Weather Data. Research of Processes and Development of Technical Means for Generating Thermal and Electric Energy using Renewable Energy and Environmental Energy for Small Distributed Energy Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Majorov.

Additional information

Translated by M. Chubarova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majorov, V.A. Principles of Building Systems with Concentrated Solar Energy. Appl. Sol. Energy 56, 198–206 (2020). https://doi.org/10.3103/S0003701X2003007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X2003007X

Keywords:

Navigation