Skip to main content
Log in

Aniline degradation by peroxydisulfate activated with magnetic Fe–Mn oxides composite: efficiency, stability, and mechanism

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Magnetic Fe–Mn oxides composite prepared by a chemical co-precipitation method was used as a heterogenous peroxydisulfate (PDS) catalyst for the decomposition of aniline. The catalyst was investigated by X-ray diffraction (XRD) while morphologies of powders were monitored by scanning electron microscope (SEM) and transmission electron microscopy (TEM). The catalytic performance was evaluated including the PDS concentration, catalyst dosages, solution pH value, reaction temperature and reusability. Furthermore, the mechanism of the composite activating PDS was explored through free radical quenching experiment. The result demonstrated that the degradation process kinetic well correlated to the pseudo-first order reaction kinetics. The pseudo-first order rate constant was markedly influenced by the catalyst loading and reaction temperature. The catalyst exhibited good stability, which favored the catalyst to be reused from aquatic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen WS, Huang CP (2015) Mineralization of aniline in aqueous solution by electrochemical activation of persulfate. Chemosphere 125:175–181. https://doi.org/10.1016/j.chemosphere.2014.12.053

    Article  CAS  PubMed  Google Scholar 

  2. Vazquez JA, Rial D (2014) Inhibition of selected bacterial growth by three hydrocarbons: mathematical evaluation of toxicity using a toxicodynamic equation. Chemosphere 112:56–61. https://doi.org/10.1016/j.chemosphere.2014.03.008

    Article  CAS  PubMed  Google Scholar 

  3. Zhu J, Chen C, Li Y, Zhou L, Lan Y (2019) Rapid degradation of aniline by peroxydisulfate activated with copper-nickel binary oxysulfide. Sep Purif Technol 209:1007–1015. https://doi.org/10.1016/j.seppur.2018.09.055

    Article  CAS  Google Scholar 

  4. Qi XH, Zhuang YY, Yuan YC, Gu WX (2002) Decomposition of aniline in supercritical water. J Hazard Mater 90(1):51–62. https://doi.org/10.1016/s0304-3894(01)00330-2

    Article  CAS  PubMed  Google Scholar 

  5. Xie X, Zhang Y, Huang W, Huang S (2012) Degradation kinetics and mechanism of aniline by heat-assisted persulfate oxidation. J Environ Sci 24(5):821–826. https://doi.org/10.1016/s1001-0742(11)60844-9

    Article  CAS  Google Scholar 

  6. Duran A, Monteagudo JM, San Martin I, Amunategui FJ, Patterson DA (2017) Mineralization of aniline using hydroxyl/sulfate radical-based technology in a waterfall reactor. Chemosphere 186:177–184. https://doi.org/10.1016/j.chemosphere.2017.07.148

    Article  CAS  PubMed  Google Scholar 

  7. Xue G, Wang Q, Qian Y, Gao P, Su Y, Liu Z, Chen H, Li X, Chen J (2019) Simultaneous removal of aniline, antimony and chromium by ZVI coupled with H2O2: implication for textile wastewater treatment. J Hazard Mater 368:840–848. https://doi.org/10.1016/j.jhazmat.2019.02.009

    Article  CAS  PubMed  Google Scholar 

  8. Benito A, Penades A, Lliberia JL, Gonzalez-Olmos R (2017) Degradation pathways of aniline in aqueous solutions during electro-oxidation with BDD electrodes and UV/H2O2 treatment. Chemosphere 166:230–237. https://doi.org/10.1016/j.chemosphere.2016.09.105

    Article  CAS  PubMed  Google Scholar 

  9. Duran A, Monteagudo JM, San Martin I, Merino S (2018) Photocatalytic degradation of aniline using an autonomous rotating drum reactor with both solar and UV-C artificial radiation. J Environ Manag 210:122–130. https://doi.org/10.1016/j.jenvman.2018.01.012

    Article  CAS  Google Scholar 

  10. Cao M, Hou Y, Zhang E, Tu S, Xiong S (2019) Ascorbic acid induced activation of persulfate for pentachlorophenol degradation. Chemosphere 229:200–205. https://doi.org/10.1016/j.chemosphere.2019.04.135

    Article  CAS  PubMed  Google Scholar 

  11. Ding D, Liu C, Ji Y, Yang Q, Chen L, Jiang C, Cai T (2017) Mechanism insight of degradation of norfloxacin by magnetite nanoparticles activated persulfate: identification of radicals and degradation pathway. Chem Eng J 308:330–339. https://doi.org/10.1016/j.cej.2016.09.077

    Article  CAS  Google Scholar 

  12. Chen T, Ma J, Zhang Q, Xie Z, Zeng Y, Li R, Liu H, Liu Y, Lv W, Liu G (2019) Degradation of propranolol by UV-activated persulfate oxidation: reaction kinetics, mechanisms, reactive sites, transformation pathways and Gaussian calculation. Sci Total Environ 690:878–890. https://doi.org/10.1016/j.scitotenv.2019.07.034

    Article  CAS  PubMed  Google Scholar 

  13. Hou S, Ling L, Shang C, Guan Y, Fang J (2017) Degradation kinetics and pathways of haloacetonitriles by the UV/persulfate process. Chem Eng J 320:478–484. https://doi.org/10.1016/j.cej.2017.03.042

    Article  CAS  Google Scholar 

  14. Yang SY, Yang X, Shao XT, Niu R, Wang LL (2011) Activated carbon catalyzed persulfate oxidation of Azo dye acid orange 7 at ambient temperature. J Hazard Mater 186(1):659–666. https://doi.org/10.1016/j.jhazmat.2010.11.057

    Article  CAS  PubMed  Google Scholar 

  15. Hu P, Long M (2016) Cobalt-catalyzed sulfate radical-based advanced oxidation: a review on heterogeneous catalysts and applications. Appl Catal B 181:103–117. https://doi.org/10.1016/j.apcatb.2015.07.024

    Article  CAS  Google Scholar 

  16. Chen X, Wang W, Xiao H, Hong C, Zhu F, Yao Y, Xue Z (2012) Accelerated TiO2 photocatalytic degradation of Acid Orange 7 under visible light mediated by peroxymonosulfate. Chem Eng J 193:290–295. https://doi.org/10.1016/j.cej.2012.04.033

    Article  CAS  Google Scholar 

  17. Norzaee S, Taghavi M, Djahed B, Kord Mostafapour F (2018) Degradation of Penicillin G by heat activated persulfate in aqueous solution. J Environ Manag 215:316–323. https://doi.org/10.1016/j.jenvman.2018.03.038

    Article  CAS  Google Scholar 

  18. Yousefi N, Pourfadakari S, Esmaeili S, Babaei AA (2019) Mineralization of high saline petrochemical wastewater using Sonoelectro-activated persulfate: degradation mechanisms and reaction kinetics. Microchem J 147:1075–1082. https://doi.org/10.1016/j.microc.2019.04.020

    Article  CAS  Google Scholar 

  19. Lominchar MA, Santos A, de Miguel E, Romero A (2018) Remediation of aged diesel contaminated soil by alkaline activated persulfate. Sci Total Environ 622–623:41–48. https://doi.org/10.1016/j.scitotenv.2017.11.263

    Article  CAS  PubMed  Google Scholar 

  20. Lee YC, Lo SL, Chiueh PT, Chang DG (2009) Efficient decomposition of perfluorocarboxylic acids in aqueous solution using microwave-induced persulfate. Water Res 43(11):2811–2816. https://doi.org/10.1016/j.watres.2009.03.052

    Article  CAS  PubMed  Google Scholar 

  21. Wang S, Wu J, Lu X, Xu W, Gong Q, Ding J, Dan B, Xie P (2019) Removal of acetaminophen in the Fe2+/persulfate system: Kinetic model and degradation pathways. Chem Eng J 358:1091–1100. https://doi.org/10.1016/j.cej.2018.09.145

    Article  CAS  Google Scholar 

  22. Zhang Y, Zhang Q, Dong Z, Wu L, Hong J (2018) Degradation of acetaminophen with ferrous/copperoxide activate persulfate: synergism of iron and copper. Water Res 146:232–243. https://doi.org/10.1016/j.watres.2018.09.028

    Article  CAS  PubMed  Google Scholar 

  23. Du X, Zhang Y, Hussain I, Huang S, Huang W (2017) Insight into reactive oxygen species in persulfate activation with copper oxide: activated persulfate and trace radicals. Chem Eng J 313:1023–1032. https://doi.org/10.1016/j.cej.2016.10.138

    Article  CAS  Google Scholar 

  24. Liang J, Xu X, Qamar Zaman W, Hu X, Zhao L, Qiu H, Cao X (2019) Different mechanisms between biochar and activated carbon for the persulfate catalytic degradation of sulfamethoxazole: Roles of radicals in solution or solid phase. Chem Eng J 375:121908. https://doi.org/10.1016/j.cej.2019.121908

    Article  CAS  Google Scholar 

  25. Rodriguez S, Vasquez L, Costa D, Romero A, Santos A (2014) Oxidation of orange G by persulfate activated by Fe(II), Fe(III) and zero valent iron (ZVI). Chemosphere 101:86–92. https://doi.org/10.1016/j.chemosphere.2013.12.037

    Article  CAS  PubMed  Google Scholar 

  26. Feng M, Qu R, Zhang X, Sun P, Sui Y, Wang L, Wang Z (2015) Degradation of flumequine in aqueous solution by persulfate activated with common methods and polyhydroquinone-coated magnetite/multi-walled carbon nanotubes catalysts. Water Res 85:1–10. https://doi.org/10.1016/j.watres.2015.08.011

    Article  CAS  PubMed  Google Scholar 

  27. Hussain I, Zhang Y, Huang S (2014) Degradation of aniline with zero-valent iron as an activator of persulfate in aqueous solution. RSC Adv 4(7):3502–3511. https://doi.org/10.1039/c3ra43364a

    Article  CAS  Google Scholar 

  28. Hussain I, Zhang Y, Li M, Huang S, Hayat W, He L, Du X, Liu G, Du M (2018) Heterogeneously degradation of aniline in aqueous solution using persulfate catalyzed by magnetic BiFeO3 nanoparticles. Catal Today 310:130–140. https://doi.org/10.1016/j.cattod.2018.02.017

    Article  CAS  Google Scholar 

  29. Deng J, Xu M, Qiu C, Chen Y, Ma X, Gao N, Li X (2018) Magnetic MnFe2O4 activated peroxymonosulfate processes for degradation of bisphenol A: performance, mechanism and application feasibility. Appl Surf Sci 459:138–147. https://doi.org/10.1016/j.apsusc.2018.07.198

    Article  CAS  Google Scholar 

  30. Guan R, Yuan X, Wu Z, Wang H, Jiang L, Zhang J, Li Y, Zeng G, Mo D (2018) Accelerated tetracycline degradation by persulfate activated with heterogeneous magnetic NixFe3−xO4 catalysts. Chem Eng J 350:573–584. https://doi.org/10.1016/j.cej.2018.05.195

    Article  CAS  Google Scholar 

  31. Pan X, Yan L, Li C, Qu R, Wang Z (2017) Degradation of UV-filter benzophenone-3 in aqueous solution using persulfate catalyzed by cobalt ferrite. Chem Eng J 326:1197–1209. https://doi.org/10.1016/j.cej.2017.06.068

    Article  CAS  Google Scholar 

  32. Ma Q, Zhang H, Zhang X, Li B, Guo R, Cheng Q, Cheng X (2019) Synthesis of magnetic CuO/MnFe2O4 nanocompisite and its high activity for degradation of levofloxacin by activation of persulfate. Chem Eng J 360:848–860. https://doi.org/10.1016/j.cej.2018.12.036

    Article  CAS  Google Scholar 

  33. Nuengmatcha P, Chanthai S, Mahachai R, Oh W-C (2016) Sonocatalytic performance of ZnO/graphene/TiO2 nanocomposite for degradation of dye pollutants (methylene blue, texbrite BAC-L, texbrite BBU-L and texbrite NFW-L) under ultrasonic irradiation. Dyes Pigm 134:487–497. https://doi.org/10.1016/j.dyepig.2016.08.006

    Article  CAS  Google Scholar 

  34. Wu Y, Guo J, Han Y, Zhu J, Zhou L, Lan Y (2018) Insights into the mechanism of persulfate activated by rice straw biochar for the degradation of aniline. Chemosphere 200:373–379. https://doi.org/10.1016/j.chemosphere.2018.02.110

    Article  CAS  PubMed  Google Scholar 

  35. Pang YL, Lim S, Ong HC, Chong WT (2016) Synthesis, characteristics and sonocatalytic activities of calcined gamma-Fe2O3 and TiO2 nanotubes/gamma-Fe2O3 magnetic catalysts in the degradation of Orange G. Ultrason Sonochem 29:317–327. https://doi.org/10.1016/j.ultsonch.2015.10.003

    Article  CAS  PubMed  Google Scholar 

  36. Junlabhut P, Nuthongkum P, Pechrapa W (2018) Influences of calcination temperature on structural properties of MnFe2O4 nanopowders synthesized by co-precipitation method for reusable absorbent materials. Mater Today 5(6):13857–13864. https://doi.org/10.1016/j.matpr.2018.02.028

    Article  CAS  Google Scholar 

  37. Tomul F, Arslan Y, Kabak B, Trak D, Kenduzler E, Lima EC, Hai Nguyen T (2020) Peanut shells-derived biochars prepared from different carbonization processes: Comparison of characterization and mechanism of naproxen adsorption in water. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.137828

    Article  PubMed  Google Scholar 

  38. Denisov N, Yoo J, Schmuki P (2019) Effect of different hole scavengers on the photoelectrochemical properties and photocatalytic hydrogen evolution performance of pristine and Pt-decorated TiO2 nanotubes. Electrochim Acta 319:61–71. https://doi.org/10.1016/j.electacta.2019.06.173

    Article  CAS  Google Scholar 

  39. Serpone N, Texier I, Emeline AV, Pichat P, Hidaka H, Zhao J (2000) Post-irradiation effect and reductive dechlorination of chlorophenols at oxygen-free TiO2/water interfaces in the presence of prominent hole scavengers. J Photochem Photobiol A 136(3):145–155. https://doi.org/10.1016/s1010-6030(00)00348-8

    Article  CAS  Google Scholar 

  40. Lee H, Lee HJ, Jeong J, Lee J, Park N-B, Lee C (2015) Activation of persulfates by carbon nanotubes: oxidation of organic compounds by nonradical mechanism. Chem Eng J 266:28–33. https://doi.org/10.1016/j.cej.2014.12.065

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Science and Technology Department of Henan (161100310700), and High-end Foreign Experts Introducing Intelligence Project of Henan Province (HNGD 2020047).

Author information

Authors and Affiliations

Authors

Contributions

BT Liu and JL conceived and designed the study methods. JL and LQ revised the design and created the tables and figures. JL wrote the paper. GT Li and YK Wang reviewed and analyzed the data. All authors read and approved the manuscript.

Corresponding author

Correspondence to Jing Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Qiao, L., Wang, Y. et al. Aniline degradation by peroxydisulfate activated with magnetic Fe–Mn oxides composite: efficiency, stability, and mechanism. Reac Kinet Mech Cat 131, 567–582 (2020). https://doi.org/10.1007/s11144-020-01861-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01861-1

Keywords

Navigation