Skip to main content
Log in

Development and characterization of microsatellite markers in the earthworm Drawida gisti Michaelsen, 1931 and cross-amplification in two other congeners

  • Short Communication
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The earthworm (Drawida gisti) is an ecologically important sentinel species for soils that is widely distributed throughout Eastern Asia; however, the molecular tools required for genetic diversity studies of this earthworm are still rare. The aim of the study was to develop and characterize microsatellite markers in D. gisti and to evaluate their transferability to other Drawida species. We employed a RAD-seq approach to develop 12 microsatellite markers for D. gisti. The characterization and analysis of loci was achieved using 24 individuals of D. gisti from a natural population. The number of alleles per locus ranged from four to eleven, with an average of 6.5. Observed and expected heterozygosities varied from 0.708 to 0.958, and from 0.568 to 0.883, respectively. No loci presented significant deviations from the Hardy–Weinberg equilibrium, while linkage disequilibrium was detected between three loci. Cross-species amplification tests suggested that the transferability of ten loci was positive for the two congeners D. japonica and D. ghilarovi. This set of microsatellite markers may be used to evaluate the genetic diversity and population structures of D. gisti and related species in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Anderson FE, Williams BW, Horn KM, Erséus C, Halanych KM, Santos SR, James SW (2017) Phylogenomic analyses of crassiclitellata support major Northern and Southern Hemisphere clades and a pangaean origin for earthworms. BMC Evol Biol 17:123

    Article  Google Scholar 

  2. James SW, Davidson SK (2012) Molecular phylogeny of earthworms (Annelida: Crassiclitellata) based on 28S, 18S and 16S gene sequences. Invertebr Syst 26:213–229

    Article  Google Scholar 

  3. Dupont L, Grésille Y, Richard B, Decaëns T, Mathieu J (2015) Dispersal constraints and fine-scale spatial genetic structure in two earthworm species. Biol J Linn Soc Lond 114:335–347

    Article  Google Scholar 

  4. Velavan TP, Weller S, Schulenburg H, Michiels NK (2009) High genetic diversity and heterogeneous parasite load in the earthworm Lumbricus terrestris on a German meadow. Soil Biol Biochem 41:1591–1595

    Article  CAS  Google Scholar 

  5. Dupont L, Pauwels M, Dume C, Deschins V, Audusseau H, Gigon A, Dubs F, Vandenbulcke F (2019) Genetic variation of the epigeic earthworm Lumbricus castaneus populations in urban soils of the Paris region (France) revealed using eight newly developed microsatellite markers. Appl Soil Ecol 135:33–37

    Article  Google Scholar 

  6. Blakemore RJ, Lee S, Seo HY (2012) Reports of Drawida (Oligochaeta: Moniligastridae) from far East Asia. J Species Res 3:127–166

    Article  Google Scholar 

  7. Ding J, Zhu D, Hong B, Wang HT, Li G, Ma YB, Tang YT, Chen QL (2019) Long-term application of organic fertilization causes the accumulation of antibiotic resistome in earthworm gut microbiota. Environ Int 124:145–152

    Article  CAS  Google Scholar 

  8. Klein A, Cameron EK, Heimburger B, Eisenhauer N, Scheu S, Schaefer I (2017) Changes in the genetic structure of an invasive earthworm species (Lumbricus terrestris, Lumbricidae) along an urban-rural gradient in North America. Appl Soil Ecol 120:265–272

    Article  Google Scholar 

  9. Dupont L, Torres-Leguizamon M, René-Corail P, Mathieu J (2017) Landscape features impact connectivity between soil populations: a comparative study of gene flow in earthworms. Mol Ecol 26:3128–3140

    Article  CAS  Google Scholar 

  10. Shen Z, Wang B, Hu FW, Liu HZ, Guan HB, Zheng FR (2020) Isolation and characterization of microsatellite loci in Hexagrammos otakii based on 2b-RAD method. J Appl Ichthyol 36:55–61

    Article  CAS  Google Scholar 

  11. Harper GL, Cesarini S, Casey SP, Morgan AJ, Kille P, Bruford MW (2006) Microsatellite markers for the earthworm Lumbricus rubellus. Mol Ecol Notes 6:325–327

    Article  CAS  Google Scholar 

  12. Velavan TP, Schulenburg H, Michiels NK (2007) Development and characterization of novel microsatellite markers for the common earthworm (Lumbricus terrestris L.). Mol Ecol Notes 7:1060–1062

    Article  CAS  Google Scholar 

  13. Novo M, Velavan TP, Almodóvar A, Schulenburg H, Díaz-Cosín DJ, Michiels NK (2008) Microsatellite markers for the drought-resistant earthworm Hormogaster elisae. Mol Ecol Resour 8:901–903

    Article  CAS  Google Scholar 

  14. Somers CM, Neudorf K, Jones KL, Lance SL (2011) Novel microsatellite loci for the compost earthworm Eisenia fetida: a genetic comparison of three North American vermiculture stocks. Pedobiologia 54:111–117

    Article  CAS  Google Scholar 

  15. Torres-Leguizamon M, Mathieu J, Livet A, Decaëns T, Dupont L (2012) Isolation of polymorphic microsatellite markers in Aporrectodea icterica (Savigny 1826). Soil Biol Biochem 51:16–19

    Article  CAS  Google Scholar 

  16. Strunk H, Hochkirch A, Veith M, Hankeln T, Emmerling C (2012) Isolation and characterization of eleven polymorphic microsatellite markers for the earthworm Aporrectodea longa (Ude). Eur J Soil Biol 48:56–58

    Article  CAS  Google Scholar 

  17. Souleman D, Grumiaux F, Frérot H, Vandenbulcke F, Pauwels M (2016) Isolation and characterization of eight polymorphic microsatellites markers for the earthworm Lumbricus terrestris. Eur J Soil Biol 74:76–80

    Article  CAS  Google Scholar 

  18. Cunha L, Thornber A, Kille P, Morgan AJ, Novo M (2017) A large set of microsatellites for the highly invasive earthworm Amynthas corticis predicted from low coverage genomes. Appl Soil Ecol 119:152–155

    Article  Google Scholar 

  19. Xu Q, Xiao NW (2011) Terrestrial earthworms (Oligochaeta: Opisthopora) of China. China Agricultural Press, Beijing

    Google Scholar 

  20. Zhang YF, Ganin GN, Atopkin DM, Wu DH (2020) Earthworm Drawida (Moniligastridae) Molecular phylogeny and diversity in far East Russia and Northeast China. Eur Zool J 87:180–191

    Article  Google Scholar 

  21. Hosseini P, Tremblay A, Matthews BF, Alkharouf NW (2010) An efficient annotation and gene-expression derivation tool for Illumina solexa datasets. BMC Res Notes 3:183

    Article  Google Scholar 

  22. Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659

    Article  CAS  Google Scholar 

  23. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    Article  CAS  Google Scholar 

  24. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  Google Scholar 

  25. Raymond M, Rousset F (1995) GENEPOP (version 1.2): Population genetics software for exact test and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

Download references

Funding

This study was supported by the National Key Research and Development Program of China (2016YFD0600204), the Postdoctoral Science Foundation of Jiangsu Province (2019K253), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honghua Ruan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This study was approved by the ethics committee of Nanjing Forestry University.

Reaearch involving Human and Animal participants

All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Zhang, Y., Wang, G. et al. Development and characterization of microsatellite markers in the earthworm Drawida gisti Michaelsen, 1931 and cross-amplification in two other congeners. Mol Biol Rep 47, 8265–8269 (2020). https://doi.org/10.1007/s11033-020-05799-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05799-4

Keywords

Navigation