Skip to main content

Advertisement

Log in

Specific targeting of HER2-positive human breast carcinoma SK-BR-3 cells by amygdaline-ZHER2 affibody conjugate

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Amygdalin induces apoptotic death in several carcinoma cells. Affibody is an engineered protein with a high affinity for human epidermal receptor 2 (HER2). We assessed the cytotoxic effects of the amygdalin-ZHER2 affibody conjugate on two breast carcinoma cell lines. The ZHER2 affibody gene was synthesized and transferred into E. coli BL21 as an expression host. After purification, the ZHER2 affibody was conjugated to amygdalin. The cytotoxic effects of amygdalin and its ZHER2 affibody conjugate on the SK-BR-3, with overexpression of HER2, and MCF-7 cells were evaluated by MTT assay. The effects of amygdalin and its conjugate on apoptotic death and expression of pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins were measured. Amygdalin individually showed a potent cytotoxic effect against both MCF-7 (IC50 = 14.2 mg ml−1) and SK-BR-3 cells (IC50 = 13.7 mg ml−1). However, the amygdalin-ZHER2 affibody conjugate had a more cytotoxic effect on SK-BR-3 (IC50 = 8.27 mg ml−1) than MCF-7 cells (IC50 = 19.8 mg ml−1). Amygdalin had a significant apoptotic effect on both cell lines and the effect of its conjugate on SK-BR-3 cells was significantly more potent than MCF-7 cells. Amygdalin increased Bax and decreased Bcl-2 expression in both cell lines. However, the effect of its conjugate on the Bax and Bcl-2 expression in SK-BR-3 was more potent than MCF-7 cells. In conclusion, the amygdalin-ZHER2 affibody conjugate may be considered as a valuable candidate for specific treatment of breast cancer patients with overexpression of HER2. However, further in vivo studies are required to explain the antitumoral effects of constructed amygdalin-ZHER2 affibody conjugate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Holzbecher MD, Moss MA, Ellenberger HA (1984) The cyanide content of laetrile preparations, apricot, peach and apple seeds. J Toxicol Clin Toxicol 22(4):341–347

    CAS  PubMed  Google Scholar 

  2. Santos Pimenta LP, Schilthuizen M, Verpoorte R, Choi YH (2014) Quantitative analysis of amygdalin and prunasin in Prunus serotina Ehrh. using 1H-NMR spectroscopy. Phytochem Anal 25(2):122–126

    CAS  PubMed  Google Scholar 

  3. Zhou C, Qian L, Ma H, Yu X, Zhang Y, Qu W et al (2012) Enhancement of amygdalin activated with β-d-glucosidase on HepG2 cells proliferation and apoptosis. Carbohydr Polym 90(1):516–523

    CAS  PubMed  Google Scholar 

  4. Wodinsky I, Swiniarski J (1975) Antitumor activity of amygdalin MF (NSC-15780) as a single agent and with beta-glucosidase (NSC-128056) on a spectrum of transplantable rodent tumors. Cancer Chemother Rep 59(5):939–950

    CAS  PubMed  Google Scholar 

  5. Blaheta RA, Nelson K, Haferkamp A, Juengel E (2016) Amygdalin, quackery or cure? Phytomedicine 23(4):367–376

    CAS  PubMed  Google Scholar 

  6. Moertel CG, Fleming TR, Rubin J, Kvols LK, Sarna G, Koch R et al (1982) A clinical trial of amygdalin (Laetrile) in the treatment of human cancer. N Engl J Med 306(4):201–206

    CAS  PubMed  Google Scholar 

  7. Saleem M, Asif J, Asif M, Saleem U (2018) Amygdalin from apricot kernels induces apoptosis and causes cell cycle arrest in cancer cells: an updated review. Anti-Cancer Agents Med Chem 18(12):1650–1655

    CAS  Google Scholar 

  8. Nielsen DL, Andersson M, Kamby C (2009) HER2-targeted therapy in breast cancer. Monoclonal antibodies and tyrosine kinase inhibitors. Cancer Treat Rev 35(2):121–136

    CAS  PubMed  Google Scholar 

  9. Mohamed A, Krajewski K, Cakar B, Ma CX (2013) Targeted therapy for breast cancer. Am J Pathol 183(4):1096–1112

    CAS  PubMed  Google Scholar 

  10. Nami B, Maadi H, Wang Z (2018) Mechanisms underlying the action and synergism of trastuzumab and pertuzumab in targeting HER2-positive breast cancer. Cancers 10(10):342

    CAS  PubMed Central  Google Scholar 

  11. Riccio G, Coppola C, Piscopo G, Capasso I, Maurea C, Esposito E et al (2016) Trastuzumab and target-therapy side effects: Is still valid to differentiate anthracycline Type I from Type II cardiomyopathies? Hum Vaccines Immunother 12(5):1124–1131

    Google Scholar 

  12. Von Minckwitz G, Huang C-S, Mano MS, Loibl S, Mamounas EP, Untch M et al (2019) Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N Engl J Med 380(7):617–628

    Google Scholar 

  13. Alley SC, Okeley NM, Senter PD (2010) Antibody–drug conjugates: targeted drug delivery for cancer. Curr Opin Chem Biol 14(4):529–537

    CAS  PubMed  Google Scholar 

  14. Phillips GDL, Li G, Dugger DL, Crocker LM, Parsons KL, Mai E et al (2008) Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody–cytotoxic drug conjugate. Cancer Res 68(22):9280–9290

    Google Scholar 

  15. Ghanemi M, Pourshohod A, Ghaffari MA, Amin M, Zeinali M, Jamalan M (2019) Specific targeting of HER2-positive head and neck squamous cell carcinoma line HN5 by Idarubicin-ZHER2 affibody conjugate. Curr Cancer Drug Targets 19(1):65–73

    CAS  PubMed  Google Scholar 

  16. Hansson M, Ringdahl J, Robert A, Power U, Goetsch L, Nguyen TN et al (1999) An in vitro selected binding protein (affibody) shows conformation-dependent recognition of the respiratory syncytial virus (RSV) G protein. Immunotechnology 4(3–4):237–252

    CAS  PubMed  Google Scholar 

  17. Frejd FY, Kim K-T (2017) Affibody molecules as engineered protein drugs. Exp Mol Med 49(3):e306

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Eigenbrot C, Ultsch M, Dubnovitsky A, Abrahmsén L, Härd T (2010) Structural basis for high-affinity HER2 receptor binding by an engineered protein. Proc Natl Acad Sci USA 107(34):15039–15044

    CAS  PubMed  Google Scholar 

  19. Richards DA (2018) Exploring alternative antibody scaffolds: antibody fragments and antibody mimics for targeted drug delivery. Drug Discov Today: Technol 30:35–46

    Google Scholar 

  20. Tai W, Mahato R, Cheng K (2010) The role of HER2 in cancer therapy and targeted drug delivery. J Control Release 146(3):264–275

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Puri A, Kramer-Marek G, Campbell-Massa R, Yavlovich A, Tele SC, Lee S-B et al (2008) HER2-specific affibody-conjugated thermosensitive liposomes (Affisomes) for improved delivery of anticancer agents. J Liposome Res 18(4):293–307

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    CAS  Google Scholar 

  23. Hermanson G (2008) Bioconjugate techniques, 2nd edn. Academic Press, London

    Google Scholar 

  24. Van Meerloo J, Kaspers GJ, Cloos J (2011) Cell sensitivity assays: the MTT assay. Cancer cell culture. Springer, Cham, pp 237–245

    Google Scholar 

  25. Lee HM, Moon A (2016) Amygdalin regulates apoptosis and adhesion in Hs578T triple-negative breast cancer cells. Biomol Ther 24(1):62

    CAS  Google Scholar 

  26. Shounan Y, Feng X, O'Connell PJ (1998) Apoptosis detection by annexin V binding: a novel method for the quantitation of cell-mediated cytotoxicity. J Immunol Methods 17(1–2):61–70

    Google Scholar 

  27. Szöllösi J, Balázs M, Feuerstein BG, Benz CC, Waldman FM (1995) ERBB-2 (HER2/neu) gene copy number, p185HER-2 overexpression, and intratumor heterogeneity in human breast cancer. Cancer Res 55(22):5400–5407

    PubMed  Google Scholar 

  28. Park H-J, Yoon S-H, Han L-S, Zheng L-T, Jung K-H, Uhm Y-K et al (2005) Amygdalin inhibits genes related to cell cycle in SNU-C4 human colon cancer cells. World J Gastroenterol 11(33):5156

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen Y, Ma J, Wang F, Hu J, Cui A, Wei C et al (2013) Amygdalin induces apoptosis in human cervical cancer cell line HeLa cells. Immunopharmacol Immunotoxicol 35(1):43–51

    PubMed  Google Scholar 

  30. Makarević J, Rutz J, Juengel E, Kaulfuss S, Reiter M, Tsaur I et al (2014) Amygdalin blocks bladder cancer cell growth in vitro by diminishing cyclin A and cdk2. PLoS ONE 9(8):e105590

    PubMed  PubMed Central  Google Scholar 

  31. Song Z, Xu X (2014) Advanced research on anti-tumor effects of amygdalin. J Cancer Res Ther 10(5):3

    PubMed  Google Scholar 

  32. Chang H-K, Shin M-S, Yang H-Y, Lee J-W, Kim Y-S, Lee M-H et al (2006) Amygdalin induces apoptosis through regulation of Bax and Bcl-2 expressions in human DU145 and LNCaP prostate cancer cells. Biol Pharm Bull 29(8):1597–1602

    CAS  PubMed  Google Scholar 

  33. Qian L, Xie B, Wang Y, Qian J (2015) Amygdalin-mediated inhibition of non-small cell lung cancer cell invasion in vitro. Int J Clin Exp Pathol 8(5):5363

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Juengel E, Thomas A, Rutz J, Makarevic J, Tsaur I, Nelson K et al (2016) Amygdalin inhibits the growth of renal cell carcinoma cells in vitro. Int J Mol Med 37(2):526–532

    CAS  PubMed  Google Scholar 

  35. Zhang Y, Jiang S, Zhang D, Bai X, Hecht SM, Chen S (2017) DNA–affibody nanoparticles for inhibiting breast cancer cells overexpressing HER2. Chem Commun 53(3):573–576

    CAS  Google Scholar 

  36. Orlova A, Magnusson M, Eriksson TL, Nilsson M, Larsson B, Höidén-Guthenberg I et al (2006) Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res 66(8):4339–4348

    CAS  PubMed  Google Scholar 

  37. Golmohammadzadeh G, Aghajanshakeri S, Ahangar N (2017) An overview of the most common methods for assessing cell viability. J Res Med Dent Sci 5(2):33

    Google Scholar 

  38. Ekerljung L, Lindborg M, Gedda L, Frejd FY, Carlsson J, Lennartsson J (2008) Dimeric HER2-specific affibody molecules inhibit proliferation of the SKBR-3 breast cancer cell line. Biochem Biophys Res Commun 377(2):489–494

    CAS  PubMed  Google Scholar 

  39. Ricart AD, Tolcher AW (2007) Technology insight: cytotoxic drug immunoconjugates for cancer therapy. Nat Clin Pract Oncol 4(4):245–255

    CAS  PubMed  Google Scholar 

  40. de Melo GD, Jardim DLF, Marchesi MSP, Hortobagyi GN (2016) Mechanisms of resistance and sensitivity to anti-HER2 therapies in HER2+ breast cancer. Oncotarget 7(39):64431

    Google Scholar 

  41. Alexis F, Basto P, Levy-Nissenbaum E, Radovic-Moreno AF, Zhang L, Pridgen E et al (2008) HER-2 targeted nanoparticle-affibody bioconjugates for cancer therapy. ChemMedChem 3(12):1839

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Alavizadeh SH, Akhtari J, Badiee A, Golmohammadzadeh S, Jaafari MR (2016) Improved therapeutic activity of HER2 Affibody-targeted cisplatin liposomes in HER2-expressing breast tumor models. Expert Opin Drug Deliv 13(3):325–336

    CAS  PubMed  Google Scholar 

  43. Mohammad RM, Muqbil I, Lowe L, Yedjou C, Hsu H-Y, Lin L-T et al (2015) Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol 35:S78–S103

    PubMed  PubMed Central  Google Scholar 

  44. Fulda S, Debatin K-M (2006) Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25(34):4798–4811

    CAS  PubMed  Google Scholar 

  45. Ola MS, Nawaz M, Ahsan H (2011) Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Mol Cell Biochem 351(1–2):41–58

    CAS  PubMed  Google Scholar 

  46. Ghoncheh M, Pournamdar Z, Salehiniya H (2016) Incidence and mortality and epidemiology of breast cancer in the world. Asian Pac J Cancer Prev 17(S3):43–46

    PubMed  Google Scholar 

  47. Clark GM, McGuire WL (1991) Follow-up study of HER-2/neu amplification in primary breast cancer. Cancer Res 51(3):944–948

    CAS  PubMed  Google Scholar 

  48. Simon R, Nocito A, Hübscher T, Bucher C, Torhorst J, Schraml P et al (2001) Patterns of her-2/neu amplification and overexpression in primary and metastatic breast cancer. J Natl Cancer Inst 93(15):1141–1146

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This paper is issued from the Ph.D. thesis of Bahman MoradiPoodeh and financial support was provided by Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran (Grant No. HLRC-9602).

Funding

This study was funded by Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran (Grant Number HLRC-9602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghorban Mohammadzadeh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Research involving human and/or animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradipoodeh, B., Jamalan, M., Zeinali, M. et al. Specific targeting of HER2-positive human breast carcinoma SK-BR-3 cells by amygdaline-ZHER2 affibody conjugate. Mol Biol Rep 47, 7139–7151 (2020). https://doi.org/10.1007/s11033-020-05782-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05782-z

Keywords

Navigation