Skip to main content
Log in

An overview of chalcophile element contents of pyrrhotite, pentlandite, chalcopyrite, and pyrite from magmatic Ni-Cu-PGE sulfide deposits

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

We have compiled the trace element concentrations in pyrrhotite, pentlandite, chalcopyrite, and pyrite from magmatic Ni-Cu-PGE ore deposits with the aim of understanding their petrogenesis and whether these minerals can be used as indicator minerals. Among the samples, there are some of the most studied world-class Ni-Cu- (Aguablanca, Duluth, Jinchuan, Noril’sk-Talnakh-Kharaelakh, Sudbury, Voisey’s Bay, and others) and PGE-dominated (Bushveld, Lac des Iles, Stillwater, Great Dyke, and Penikat) deposits. Crustal assimilation may be constrained using As/Se and Sb/Se ratios in pentlandite. The degree of interaction between the silicate and sulfide liquids (R-factor) can be estimated by the content of highly chalcophile elements (Dsulf liq/sil liq above 1000) in sulfide minerals. The fractional crystallization of the sulfide liquid can be traced using Se/Te ratios of pentlandite. Pyrite formed by exsolution from MSS has higher Rh, Ru, Ir, and Os than co-existing pyrrhotite, whereas pyrite formed by hydrothermal alteration of pyrrhotite inherits the Rh, Ru, Ir, and Os contents of the pyrrhotite it replaced. Sulfide minerals are preserved in transported glacial cover and their trace element chemistry can be used to discriminate their source. Pentlandite from Ni-Cu deposits has much lower Rh and Pd concentrations than those from PGE-dominated deposits, pyrite from magmatic deposits has higher Co/Sb and Se/As ratios relative to pyrite from hydrothermal deposits, and chalcopyrite from magmatic deposits has much higher Ni and lower Cd concentrations than those from hydrothermal deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Alard O, Griffin WL, Lorand JP, Jackson SE, O’Reilly SY (2000) Non-chondritic distribution of the highly siderophile elements in mantle sulphides. Nature 407(6806):891–894

    Article  Google Scholar 

  • Amaral LFS (2017) The distribution of platinum-group elements and other chalcophile elements among sulfide minerals from the Ovoid ore body of the Voisey’s Bay Ni-Cu sulfide deposit, Canada. Unpubl MSc thesis, Université du Québec à Chicoutimi, 166 pp

  • Averill SA (2001) The application of heavy indicator mineralogy in mineral exploration with emphasis on base metal indicators in glaciated metamorphic and plutonic terrains. Geol Soc Lond, Spec Publ 185(1):69–81

    Article  Google Scholar 

  • Averill SA (2011) Viable indicator minerals in surficial sediments for two major base metal deposit types: Ni-Cu-PGE and porphyry Cu. Geochem: Explor Env A 11:279–291

    Google Scholar 

  • Ballhaus C, Sylvester P (2000) Noble metal enrichment processes in the Merensky Reef, Bushveld Complex. J Petrol 41(4):545–561

    Article  Google Scholar 

  • Barnes SJ, Osborne GA, Cook D, Barnes L, Maier WD, Godel B (2011) The Santa Rita nickel sulfide deposit in the Fazenda Mirabela intrusion, Bahia, Brazil: geology, sulfide geochemistry, and genesis. Econ Geol 106(7):1083–1110

    Article  Google Scholar 

  • Barnes SJ, Mungall JE, Le Vaillant M, Godel B, Lesher CM, Holwell D, Wei B (2017) Sulfide-silicate textures in magmatic Ni-Cu-PGE sulfide ore deposits: disseminated and net-textured ores. Am Mineral 102(3):473–506

    Article  Google Scholar 

  • Barnes SJ, Staude S, Le Vaillant M, Piña R, Lightfoot PC (2018) Sulfide-silicate textures in magmatic Ni-Cu-PGE sulfide ore deposits: massive, semi-massive and sulfide-matrix breccia ores. Ore Geol Rev 101:629–651

    Article  Google Scholar 

  • Barnes SJ, Robertson JC (2019) Time scales and length scales in magma flow pathways and the origin of magmatic Ni–Cu–PGE ore deposits. Geosci Front 10(1):77–87

    Article  Google Scholar 

  • Barnes S-J (2016) Chalcophile elements. In: White WM (ed) Encyclopedia of geochemistry: a comprehensive reference source on the chemistry of the earth, Part of the series Encylopedia of Earth Sciences Series, pp 1–5

    Google Scholar 

  • Barnes S-J, Naldrett AJ, Gorton MP (1985) The origin of the fractionation of platinum-group elements in terrestrial magmas. Chem Geol 53(3–4):303–323

    Article  Google Scholar 

  • Barnes S-J, Naldrett AJ (1986) Variations in platinum group element concentrations in the Alexo mine komatiite, Abitibi greenstone belt, northern Ontario. Geol Mag 123(5):515–524

    Article  Google Scholar 

  • Barnes S-J, Makovicky E, Makovicky M, Rose-Hansen J, Karup-Moller S (1997) Partition coefficients for Ni, Cu, Pd, Pt, Rh, and Ir between monosulfide solid solution and sulfide liquid and the formation of compositionally zoned Ni–Cu sulfide bodies by fractional crystallization of sulfide liquid. Can J Earth Sci 34:366–374

    Article  Google Scholar 

  • Barnes S-J, Lightfoot PC (2005) Formation of magmatic nickel sulfide ore deposits and processes affecting their copper and platinum group element contents. Econ Geol 100th Anniversary: 179–213

  • Barnes S-J, Cox R, Zientek M (2006) Platinum-group element, gold, silver and base metal distribution in compositionally zoned sulfide droplets from the Medvezky Creek Mine, Noril’sk, Russia. Contrib Mineral Petrol 152:187–200

    Article  Google Scholar 

  • Barnes S-J, Prichard HM, Cox RA, Fisher PC, Godel B (2008) The location of the chalcophile and siderophile elements in platinum-group element ore deposits (a textural, microbeam and whole rock geochemical study): implications for the formation of the deposits. Chem Geol 248:295–317

    Article  Google Scholar 

  • Barnes S-J, Maier WD, Curl EA (2010) Composition of the marginal rocks and sills of the Rustenburg Layered Suite, Bushveld Complex, South Africa: implications for the formation of the platinum-group element deposits. Econ Geol 105(8):1491–1511

    Article  Google Scholar 

  • Barnes S-J, Ripley EM (2016) Highly siderophile and strongly chalcophile elements in magmatic ore deposits. Rev Mineral Geochem 81:725–774

    Article  Google Scholar 

  • Boudreau A, Djon L, Tchalikian A, Corkery J (2014) The Lac Des Iles Palladium deposit, Ontario, Canada part I. The effect of variable alteration on the offset zone. Mineral Deposita 49(5):625–654

    Article  Google Scholar 

  • Brenan JM, Cherniak DJ, Rose LA (2000) Diffusion of osmium in pyrrhotite and pyrite: implications for closure of the Re–Os isotopic system. Earth Planet Sci Lett 180(3–4):399–413

    Article  Google Scholar 

  • Brügmann GE, Naldrett AJ, Asif M, Lightfoot PC, Gorbachev NS, Fedorenko VA (1993) Siderophile and chalcophile metals as tracers of the evolution of the Siberian Trap in the Noril’sk region, Russia. Geochim Cosmochim Acta 57(9):2001–2018

    Article  Google Scholar 

  • Bulanova GP, Griffin WL, Ryan CG, Shestakova O, Barnes SJ (1996) Trace element in sulfide inclusions from Yakutian diamonds. Contrib Mineral Petrol 124:111–125

    Article  Google Scholar 

  • Cabri LJ (1973) New data on phase relations in the Cu-Fe-S system. Econ Geol 68:443–454

    Article  Google Scholar 

  • Cabri LJ (2002) The geology, geochemistry, mineralogy and mineral beneficiation of platinum-group elements. Can Inst Min Metall Spec Vol 54:13–129

    Google Scholar 

  • Cabri LJ, McMahon G (1995) SIMS analysis of sulfide minerals for Pt and Au; methodology and relative sensitivity factors (RSF). Can Mineral 33(2):349–359

    Google Scholar 

  • Cabri LJ, Sylvestor PL, Tubrett MN, Peregoedova A, Laflamme JHG (2003) Comparison of LAM-ICP-MS and micro-PIXE results for palladium and rhodium in selected samples of Noril’sk and Talnakh sulfides. Can Mineral 41:321–329

    Article  Google Scholar 

  • Cafagna F, Jugo PJ (2016) An experimental study on the geochemical behavior of highly siderophile elements (HSE) and metalloids (As, Se, Sb, Te, Bi) in a mss-iss-pyrite system at 650° C: a possible magmatic origin for Co-HSE-bearing pyrite and the role of metalloid-rich phases in the fractionation of HSE. Geochim Cosmochim Acta 178:233–258

    Article  Google Scholar 

  • Campbell IH, Naldrett AJ (1979) The influence of silicate: sulfide ratios on the geochemistry of magmatic sulfides. Econ Geol 74(6):1503–1506

    Article  Google Scholar 

  • Campbell IH, Barnes SJ (1984) A model for the geochemistry of the platinum-group elements in magmatic sulfide deposits. Can Mineral 22(1):151–160

    Google Scholar 

  • Chen LM, Song XY, Keays RR, Tian YL, Wang YS, Deng YF, Xiao JF (2013) Segregation and fractionation of magmatic Ni-Cu-PGE sulfides in the western Jinchuan intrusion, northwestern China: insights from platinum group element geochemistry. Econ Geol 108(8):1793–1811

    Article  Google Scholar 

  • Chen LM, Song XY, Danyushevsky LV, Wang YS, Tian YL, Xiao JF (2015) A laser ablation ICP-MS study of platinum-group and chalcophile elements in base metal sulfide minerals of the Jinchuan Ni–Cu sulfide deposit, NW China. Ore Geol Rev 65:955–967

    Article  Google Scholar 

  • Cook N, Ciobanu CL, George L, Zhu ZY, Wade B, Ehrig K (2016) Trace element analysis of minerals in magmatic-hydrothermal ores by laser ablation inductively-coupled plasma mass spectrometry: approaches and opportunities. Minerals 6(4):111

    Article  Google Scholar 

  • Czamanske GK, Kunilov VE, Zientek ML, Cabri LJ, Likhachev AP, Calk LC, Oscarson (1992) A proton-microprobe study of sulphide ores from the Noril’sk-Talnakh district Siberia. Can Mineral 30:249–287

    Google Scholar 

  • Danyushevsky L, Robinson P, Gilbert S, Norman M, Large R, McGoldrick P, Shelley M (2011) Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS: standard development and consideration of matrix effects. Geochem: Explor Env A 11:51–60

    Google Scholar 

  • Dare SAS, Barnes S-J, Prichard HM (2010a) The distribution of platinum group elements (PGE) and other chalcophile elements among sulfides from the Creighton Ni–Cu–PGE sulfide deposit, Sudbury, Canada, and the origin of palladium in pentlandite. Mineral Deposita 45:765–793

    Article  Google Scholar 

  • Dare SAS, Barnes S-J, Prichard HM, Fisher PC (2010b) The timing and formation of platinum-group minerals from the Creighton Ni-Cu-platinum-group element sulfide deposit, Sudbury, Canada: early crystallization of PGE-rich sulfarsenides. Econ Geol 105:1071–1096

    Article  Google Scholar 

  • Dare SAS, Barnes S-J, Prichard HM, Fisher PC (2011) Chalcophile and platinum-group element (PGE) concentrations in the sulfide minerals from the McCreedy East deposit, Sudbury, Canada, and the origin of PGE in pyrite. Mineral Deposita 46(4):381–407

    Article  Google Scholar 

  • Dare SAS, Barnes S-J, Prichard HM, Fisher PC (2014) Mineralogy and geochemistry of Cu-rich ores from the McCreedy East Ni-Cu-PGE deposit (Sudbury, Canada): implications for the behavior of platinum group and chalcophile elements at the end of crystallization of a sulfide liquid. Econ Geol 109:343–366

    Article  Google Scholar 

  • Djon MLN, Barnes S-J (2012) Changes in sulfides and platinum-group minerals with the degree of alteration in the Roby, Twilight, and High Grade Zones of the Lac des Iles Complex, Ontario, Canada. Mineral Deposita 47:875–896

    Article  Google Scholar 

  • Duran CJ, Barnes S-J, Corkery JT (2015) Chalcophile and platinum-group element distribution in pyrites from the sulfide-rich pods of the Lac des Iles Pd deposits, Western Ontario, Canada: implications for post-cumulus re-equilibration of the ore and the use of pyrite compositions in exploration. J Geochem Explor 158:223–242

    Article  Google Scholar 

  • Duran CJ, Barnes S-J, Corkery JT (2016) Trace element distribution in primary sulfides and Fe–Ti oxides from the sulfide-rich pods of the Lac des Iles Pd deposits, Western Ontario, Canada: constraints on processes controlling the composition of the ore and the use of pentlandite compositions in exploration. J Geochem Explor 166:45–63

    Article  Google Scholar 

  • Duran CJ, Barnes S-J, Pleše P, Prašek MK, Zientek ML, Pagé P (2017) Fractional crystallization-induced variations in sulfides from the Noril’sk-Talnakh mining district (polar Siberia, Russia). Ore Geol Rev 90:326–351

    Article  Google Scholar 

  • Duran CJ, Dubé-Loubert H, Pagé P, Barnes S-J, Roy M, Savard D, Cave B, Arguin JP, Mansur ET (2019) Applications of trace element chemistry of pyrite and chalcopyrite in glacial sediments to mineral exploration targeting: example from the Churchill Province, northern Quebec, Canada. J Geochem Explor 196:105–130

    Article  Google Scholar 

  • Duran CJ, Barnes SJ, Mansur ET, Dare SA, Bédard LP, Sluzhenikin SF (2020) Magnetite chemistry by laser ablation-inductively coupled plasma-mass spectrometry records sulfide fractional crystallization in massive nickel-copper-platinum group element ores from the Norilsk-Talnakh Mining District (Siberia, Russia): implications for trace element partitioning into magnetite. Econ Geol

  • Dutrizac JE (1976) Reactions in cubanite and chalcopyrite. Can Mineral 14(2):172–181

    Google Scholar 

  • Fiorentini ML, Bekker A, Rouxel O, Wing BA, Maier W, Rumble D (2012) Multiple sulfur and iron isotope composition of magmatic Ni-Cu-(PGE) sulfide mineralization from eastern Botswana. Econ Geol 107(1):105–116

    Article  Google Scholar 

  • George LL, Cook NJ, Ciobanu CL, Wade BP (2015) Trace and minor elements in galena: a reconnaissance LA-ICP-MS study. Am Mineral 100(2–3):548–569

    Article  Google Scholar 

  • George LL, Cook NJ, Crowe BB, Ciobanu CL (2018) Trace elements in hydrothermal chalcopyrite. Min Mag 82(1):59–88

    Article  Google Scholar 

  • Gervilla F, Papunen H, Kojonen K, Johanson B (1998) Platinum-, palladium-and gold-rich arsenide ores from the Kylmäkoski Ni-Cu deposit. Mineral Petrol 64(1–4):163–185

    Article  Google Scholar 

  • Gervilla F, Cabri LJ, Kojonen K, Oberthür T, Weiser TW, Johanson B, Laflamme JG (2004) Platinum-group element distribution in some ore deposits: results of EPMA and micro-PIXE analyses. Microchim Acta 147(3):167–173

    Article  Google Scholar 

  • Gilbert S, Danyushevsky L, Robinson P, Wohlgemuth-Ueberwasser C, Pearson N, Savard D, Hanley J (2013) A comparative study of five reference materials and the Lombard meteorite for the determination of the platinum-group elements and gold by LA-ICP-MS. Geostand Geoanal Res 37(1):51–64

    Article  Google Scholar 

  • Godel B, Barnes S-J, Maier WD (2007) Platinum-group elements in sulphide minerals, platinum-group minerals, and whole-rocks of the Merensky Reef (Bushveld Complex, South Africa): implications for the formation of the reef. J Petrol 48:1569–1604

    Article  Google Scholar 

  • Godel B, Barnes S-J (2008) Platinum-group elements in sulfide minerals and the whole rocks of the JM Reef (Stillwater Complex): implication for the formation of the reef. Chem Geol 248:272–294

    Article  Google Scholar 

  • Godel B, González-Álvarez I, Barnes SJ, Barnes S-J, Parker P, Day J (2012) Sulfides and sulfarsenides from the Rosie nickel prospect, Duketon greenstone belt, Western Australia. Econ Geol 107:275–294

    Article  Google Scholar 

  • Grinenko LI (1985) Sources of sulfur of the nickeliferous and barren gabbro-dolerite intrusions of the northwest Siberian platform. Int Geol Rev 27(6):695–708

    Article  Google Scholar 

  • Harris ER, Kinnaird JA, Harris C, Horstmann UE (2005) A new look at sulphide mineralisation of the northern limb, Bushveld Complex: a stable isotope study. Appl Earth Sci 114(4):252–263

    Article  Google Scholar 

  • Holwell D, McDonald (2007) Distribution of platinum-group elements in the Platreef at Overysel, northern Bushveld Complex: a combined PGM and LA-ICP-MS study. Contrib Mineral Petrol 154:171–190

    Article  Google Scholar 

  • Holwell D, Adeyemi Z, Ward LA, Smith DJ, Graham SD, McDonald I, Smith JW (2017) Low temperature alteration of magmatic Ni-Cu-PGE sulfides as a source for hydrothermal Ni and PGE ores: a quantitative approach using automated mineralogy. Ore Geol Rev 91:718–740

    Article  Google Scholar 

  • Houlé MG, Lesher CM, Davis PC (2012) Thermomechanical erosion at the Alexo Mine, Abitibi greenstone belt, Ontario: implications for the genesis of komatiite-associated Ni–Cu–(PGE) mineralization. Mineral Deposita 47(1–2):105–128

    Article  Google Scholar 

  • Horwitz W, Kamps LVR, Boyer KW (1980) Quality assurance in the analysis of foods for trace constituents. J Assoc Off Anal Chem 63(6):1344–1354

    Google Scholar 

  • Hutchinson D, McDonald I (2008) Laser ablation ICP-MS study of platinum-group elements in sulphides from the Platreef at Turfspruit, northern limb of the Bushveld Complex, South Africa. Mineral Deposita 43:695–711

    Article  Google Scholar 

  • Iacono-Marziano G, Ferraina C, Gaillard F, Di Carlo I, Arndt NT (2017) Assimilation of sulfate and carbonaceous rocks: experimental study, thermodynamic modeling and application to the Noril’sk-Talnakh region (Russia). Ore Geol Rev 90:399–413

    Article  Google Scholar 

  • Junge M, Wirth R, Oberthür T, Melcher F, Schreiber A (2015) Mineralogical siting of platinum-group elements in pentlandite from the Bushveld Complex, South Africa. Mineral Deposita 50:41–54

    Article  Google Scholar 

  • Junge M, Oberthür T, Kraemer D, Melcher F, Piña R, Derrey IT, Strauss H (2019) Distribution of platinum-group elements in pristine and near-surface oxidized Platreef ore and the variation along strike, northern Bushveld Complex, South Africa. Mineral Deposita 54(6):885–912

    Article  Google Scholar 

  • Kanitpanyacharoen W, Boudreau AE (2013) Sulfide-associated mineral assemblages in the Bushveld Complex, South Africa: platinum-group element enrichment by vapor refining by chloride–carbonate fluids. Mineral Deposita 48(2):193–210

    Article  Google Scholar 

  • Keays RR, Lightfoot PC (2010) Crustal sulfur is required to form magmatic Ni-Cu sulfide deposits: evidence form chalcophile element signatures of Siberian and Deccan Trap basalts. Mineral Deposita 45:241–257

    Article  Google Scholar 

  • Kelly DP, Vaughan DJ (1983) Pyrrhotine-pentlandite ore textures: a mechanistic approach. Mineral Mag 47:453–463

    Article  Google Scholar 

  • Ketris MP, Yudovich YE (2009) Estimations of Clarkes for Carbonaceous biolithes: world averages for trace element contents in black shales and coals. Int J Coal Geol 78(2):135–148

    Article  Google Scholar 

  • Kiseeva ES, Fonseca RO, Smythe DJ (2017) Chalcophile elements and sulfides in the upper mantle. Elements 13(2):111–116

    Article  Google Scholar 

  • Kissin SA, Scott SD (1982) Phase relations involving pyrrhotite below 350 degrees C. Econ Geol 77(7):1739–1754

    Article  Google Scholar 

  • Kitakaze A, Machida T, Komatsu R (2016) Phase relations in the Fe-Ni-S system from 875 to 650°C. Can Mineral 54:1175–1186

    Article  Google Scholar 

  • Knight RD, Prichard HM, Ferreira Filho CF (2017) Evidence for As contamination and the partitioning of Pd into Pentlandite and Co+ platinum group elements into pyrite in the Fazenda Mirabela intrusion, Brazil. Econ Geol 112(8):1889–1912

    Article  Google Scholar 

  • Kojima S, Sugaki A (1984) Phase relations in the central portion of the Cu-Fe-Zn-S system between 800° and 500°C. Mineral J 12:15–28

    Article  Google Scholar 

  • Kosyakov VI, Sinyakova EF (2012) Physicochemical prerequisites for the formation of primary orebody zoning at copper-nickel sulfide deposits (by the example of the systems Fe–Ni–S and Cu–Fe–S). Russ Geol Geophys 53(9):861–882

    Article  Google Scholar 

  • Kullerud G, Yoder HS (1959) Pyrite stability relations in the Fe-S system. Econ Geol 54(4):533–572

    Article  Google Scholar 

  • Le Vaillant M, Barnes SJ, Fiorentini ML, Barnes S-J, Bath A, Miller J (2018) Platinum-group element and gold contents of arsenide and sulfarsenide minerals associated with Ni and Au deposits in Archean greenstone belts. Mineral Mag 82(3):625–647

    Article  Google Scholar 

  • Lesher CM, Burnham OM (2001) Multicomponent elemental and isotopic mixing in Ni–Cu–(PGE) ores at Kambalda, Western Australia. Can Mineral 39(2):421–446

    Article  Google Scholar 

  • Lesher CM, Burnham OM, Keays RR, Barnes SJ, Hulbert L (2001) Trace-element geochemistry and petrogenesis of barren and ore-associated komatiites. Can Mineral 39(2):673–696

    Article  Google Scholar 

  • Li C, Ripley EM (2009) Sulfur contents at sulfide-liquid or anhydrite saturation in silicate melts: empirical equations and example applications. Econ Geol 104(3):405–412

    Article  Google Scholar 

  • Li C, Barnes S-J, Makovicky E, Rose-Hansen J, Makovicky M (1996) Partitioning of Ni, Cu, Ir, Rh, Pt and Pd between monosulfide solid solution and sulfide liquid: effects of composition and temperature. Geochim Cosmochim Acta 60:1231–1238

    Article  Google Scholar 

  • Li Y, Audétat A (2015) Effects of temperature, silicate melt composition, and oxygen fugacity on the partitioning of V, Mn Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and silicate melt. Geochim Cosmochim Acta 162:25–45

    Article  Google Scholar 

  • Liu Y, Brenan J (2015) Partitioning of platinum-group elements (PGE) and chalcogens (Se, Te, As, Sb, Bi) between monosulfide-solid solution (MSS), intermediate solid solution (ISS) and sulfide liquid at controlled fO2–fS2 conditions. Geochim Cosmochim Acta 159:139–161

    Article  Google Scholar 

  • Liang QL, Song XY, Wirth R, Chen LM, Dai ZH (2019) Implications of nano-and micrometer-size platinum-group element minerals in base metal sulfides of the Yangliuping Ni-Cu-PGE sulfide deposit, SW China. Chem Geol 517:7–21

    Article  Google Scholar 

  • Locmelis M, Melcher F, Oberthür T (2010) Platinum-group element distribution in the oxidized main sulfide zone, Great Dyke, Zimbabwe. Mineral Deposita 45(1):93–109

    Article  Google Scholar 

  • Lorand JP, Gros M, Pattou L (1999) Fractionation of platinum-group element in the upper mantle: a detailed study in Pyrenean orogenic peridotites. J Petrol 40:957–981

    Article  Google Scholar 

  • Lorand JP, Alard O (2001) Platinum-group element abundances in the upper mantle: new constraints from in situ and whole-rock analyses of Massif Central xenoliths (France). Geochim Cosmochim Acta 65(16):2789–2806

    Article  Google Scholar 

  • Lorand JP, Luguet A, Alard O, Bezos A, Meisel T (2008) Distribution of platinum-group elements in orogenic lherzolites: a case study in a Fontête Rouge lherzolite (French Pyrenees). Chem Geol 248:174–194

    Article  Google Scholar 

  • Lorand JP, Alard O (2010) Determination of selenium and tellurium concentrations in Pyrenean peridotites (Ariege, France): new insight into S/Se/Te systematics of the upper in mantle samples. Chem Geol 278(1–2):120–130

    Article  Google Scholar 

  • Lorand J-P, Alard O, Luguet A (2010) Platinum-group element micronuggets and refertilization process in the Lherz peridotite. Earth Planet Sci Lett 289:298–310

    Article  Google Scholar 

  • Lorand JP, Luguet A (2016) Chalcophile and siderophile elements in mantle rocks: trace elements controlled by trace minerals. Rev Mineral Geochem 81(1):441–488

    Article  Google Scholar 

  • Luguet A, Alard O, Lorand JP, Pearson NJ, Ryan C, O’Reilly SY (2001) Laser-ablation microprobe (LAM)-ICPMS unravels the highly siderophile element geochemistry of the oceanic mantle. Earth Planet Sci Lett 189(3–4):285–294

    Article  Google Scholar 

  • Luguet A, Lorand JP, Alard O, Cottin JY (2004) A multi-technique study of platinum group element systematic in some Ligurian ophiolitic peridotites, Italy. Chem Geol 208(1–4):175–194

    Article  Google Scholar 

  • Lusk J, Bray DM (2002) Phase relations and the electrochemical determination of sulfur fugacity for selected reactions in the Cu–Fe–S and Fe–S systems at 1 bar and temperatures between 185 and 460°C. Chem Geol 192(3–4):227–248

    Article  Google Scholar 

  • Lyubetskaya T, Korenaga J (2007) Chemical composition of earth’s primitive mantle and its variance: 1. method and results. J Geophys Res 112:B03211

    Google Scholar 

  • Maier WD, Arndt NT, Curl EA (2000) Progressive crustal contamination of the Bushveld Complex: evidence from Nd isotopic analyses of the cumulate rocks. Contrib Mineral Petrol 140(3):316–327

    Article  Google Scholar 

  • Maier WD, Barnes S-J, Karykowski BT (2016) A chilled margin of komatiite and Mg-rich basaltic andesite in the western Bushveld Complex, South Africa. Contrib Mineral Petrol 171(6):57

    Article  Google Scholar 

  • Makovicky E, Karup-Møller S, Makovicky M, Rose-Hansen J (1990) Experimental studies on the phase systems Fe-Ni-Pd-S and Fe-Pt-Pd-As-S applied to PGE deposits. Mineral Petrol 42(1–4):307–319

    Article  Google Scholar 

  • Mansur ET, Barnes S-J, Duran CJ (2019) Textural and compositional evidence for the formation of pentlandite via peritectic reaction: implications for the distribution of highly siderophile elements. Geology 47(4):351–354

    Article  Google Scholar 

  • Mansur ET, Barnes S-J, Duran CJ (2020) Distribution of chalcophile and platinum-group elements among pyrrhotite, pentlandite, chalcopyrite and cubanite from the Noril’sk-Talnakh ores: implications for the formation of platinum-group minerals. Mineral Deposita 55:1215–1232

    Article  Google Scholar 

  • Mansur ET, Barnes S-J (2020a) The role of Te, As, Bi, Sn and Sb during the formation of PGE deposits: examples from the Bushveld and Stillwater Complexes. Geochim Cosmochim Acta 272:235–258

    Article  Google Scholar 

  • Mansur ET, Barnes SJ (2020b) Concentrations of Te, As, Bi, Sb and Se in the marginal zone of the Bushveld Complex: evidence for crustal contamination and the nature of the magma that formed the Merensky Reef. Lithos 105407

  • Mavrogenes JA, O’Neill HSC (1999) The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas. Geochim Cosmochim Acta 63(7–8):1173–1180

    Article  Google Scholar 

  • McClenaghan MB (2005) Indicator mineral methods in mineral exploration. Geochem: Explor Env A 5(3):233–245

    Google Scholar 

  • McClenaghan MB, Averill SA, Kjarsgaard IM, Layton-Matthews D, Matile G (2011) Indicator mineral signatures of magmatic Ni-Cu deposits, Thompson Nickel Belt, central Canada. In: McClenaghan, B., Peuraniemi, V., Lehtonen, M. (Eds.), Indicator mineral methods in mineral exploration. Workshop in the 25th International Applied Geochemistry Symposium 2011, 22–26 August 2011 Rovaniemi, Finland. Vuorimiesyhdistys, B92–4, (72 pp.)

  • McClenaghan MB, Paulen RC (2018) Application of till mineralogy and geochemistry to mineral exploration. In: Menzies J, van der Meer JJM (eds) Past glacial environments, Second edn, pp 689–751

  • Mota-e-Silva J, Prichard HM, Ferreira Filho CF, Fisher PC, McDonald I (2015) Platinum-group minerals in the Limoeiro Ni–Cu–(PGE) sulfide deposit, Brazil: the effect of magmatic and upper amphibolite to granulite metamorphic processes on PGM formation. Mineral Deposita 50(8):1007–1029

    Article  Google Scholar 

  • Mota-E-Silva J, Prichard HM, Suárez S, Ferreira Filho CF, Fisher PC (2016) Supergene alteration of platinum-group minerals and the formation of Pd-Cu-O and Pd-IO compounds in the Limoeiro Ni-Cu-(PGE) deposit, Brazil. Can Mineral 54(3):755–778

    Article  Google Scholar 

  • Mungall JE (2007) Crystallization of magmatic sulfides: an empirical model and application to Sudbury ores. Geochim Cosmochim Acta 71(11):2809–2819

    Article  Google Scholar 

  • Mungall JE, Andrews DR, Cabri LJ, Sylvester PJ, Tubrett M (2005) Partitioning of Cu, Ni, Au, and platinum-group elements between monosulfide solid solution and sulfide melt under controlled oxygen and sulfur fugacities. Geochim Cosmochim Acta 69:4349–4360

    Article  Google Scholar 

  • Naldrett AJ, Kullerud G (1967) A study of the Strathcona mine and its bearing on the origin of the nickel-copper ores of the Sudbury district, Ontario. J Petrol 8(3):453–531

    Article  Google Scholar 

  • Naldrett AJ, Craig JR, Kullerud G (1967) The central portion of the Fe-Ni-S system and its bearing on pentlandite exsolution in iron-nickel sulfide ores. Econ Geol 62(6):826–847

    Article  Google Scholar 

  • Naldrett AJ (2004) Magmatic sulfide deposits: geology, geochemistry and exploration. Springer, Berlin, 727 pp

    Book  Google Scholar 

  • Naldrett AJ (2011) Fundamentals of magmatic sulfide deposits. Rev Econ Geol 17:1–50

    Google Scholar 

  • Nikkarinen M, Kallio E, Lestinen P, Ayräs M (1984) Mode of occurrence of Cu and Zn in till over three mineralized areas in Finland. J Geochem Explor 21(1–3):239–247

    Article  Google Scholar 

  • Oberthür T (2011) Platinum-group element mineralization of the main sulfide zone, Great Dyke, Zimbabwe. Rev Econ Geol 17:329–349

    Google Scholar 

  • Oberthür T, Cabri LJ, Weiser TJ, McMahon G, Mueller P (1997) Pt, Pd and other trace elements in sulfides of the main sulfide zone, Great Dyke, Zimbabwe; a reconnaissance study. Can Mineral 35(3):597–609

    Google Scholar 

  • Oberthür T, Weiser TW, Gast L, Kojonen K (2003) Geochemistry and mineralogy of platinum-group elements at Hartley Platinum Mine, Zimbabwe. Mineral Deposita 38(3):327–343

    Article  Google Scholar 

  • Oberthur T, Melcher F (2005) PGE and PGM in the supergene environment: a case study of persistence and redistribution in the main sulphide zone on the Great Dyke, Zimbabwe. In: Mungall JE (ed) Exploration for platinum-group elements deposits, Mineralogical Association of Canada Short Course, vol 35, pp 97–111

    Google Scholar 

  • Oberthür T, Melcher F, Weiser TW (2017) Detrital platinum-group minerals and gold in placers of southeastern Samar Island, Philippines. Can Mineral 55(1):45–62

    Article  Google Scholar 

  • Osbahr I, Klemd R, Oberthür T, Brätz H, Schouwstra R (2013) Platinum-group element distribution in base-metal sulfides of the Merensky Reef from the eastern and western Bushveld Complex, South Africa. Mineral Deposita 48(2):211–232

    Article  Google Scholar 

  • Osbahr I, Oberthür T, Klemd R, Josties A (2014) Platinum-group element distribution in base-metal sulfides of the UG2 chromitite, Bushveld Complex, South Africa-a reconnaissance study. Mineral Deposita 49(6):655–665

    Article  Google Scholar 

  • Peuraniemi V (1982) Geochemistry of till and mode of occurrence of metals in some moraine types in Finland. In: Geological Survey of Finland, Bulletin, p 322 (75 pp.)

    Google Scholar 

  • Peuraniemi V (1984) Weathering of sulphide minerals in till in some mineralized areas of Finland. In: Prospecting in areas of glaciated terrain. Institution of Mining and Metallurgy, London, pp 127–135

    Google Scholar 

  • Peuraniemi V, Eskola T (2013) Glacial dispersal and mode of occurrence of metals in till and esker gravel at Kumpuselka, northern Finland. Geochem: Explor Env A 13:195–203

    Google Scholar 

  • Piña R, Gervilla F, Ortega L, Lunar R (2008) Mineralogy and geochemistry of platinum-group elements in the Aguablanca Ni-Cu deposit (SW Spain). Mineral Petrol 92(1–2):259–282

    Article  Google Scholar 

  • Piña R, Gervilla F, Barnes S-J, Ortega L, Lunar R (2012) Distribution of platinum-group and chalcophile elements in the aguablanca Ni-Cu sulfide deposit (SW Spain): evidence from a LA-ICP-MS study. Chem Geol 302:61–75

    Article  Google Scholar 

  • Piña R, Gervilla F, Barnes S-J, Ortega L, Lunar R (2013a) Platinum-group elements-bearing pyrite from the Aguablanca Ni-Cu sulphide deposit (SW Spain): a LA-ICP-MS study. Eur J Mineral 25(2):241–252

    Article  Google Scholar 

  • Piña R, Gervilla F, Barnes S-J, Ortega L, Lunar R (2013b) Partition coefficients of platinum group and chalcophile elements between arsenide and sulfide phases as determined in the Beni Bousera Cr-Ni mineralization (North Morocco). Econ Geol 108(5):935–951

    Article  Google Scholar 

  • Piña R, Gervilla F, Barnes S-J, Ortega L, Lunar R (2015) Liquid immiscibility between arsenide and sulfide melts: evidence from a LA-ICP-MS study in magmatic deposits at Serranía de Ronda (Spain). Mineral Deposita 50(3):265–279

    Article  Google Scholar 

  • Piña R, Gervilla F, Barnes S-J, Oberthür T, Lunar R (2016) Platinum-group element concentrations in pyrite from the main sulfide zone of the Great Dyke of Zimbabwe. Mineral Deposita 51(7):853–872

    Article  Google Scholar 

  • Prichard H, Hutchinson D, Fisher P (2004) Petrology and crystallization history of multiphase sulfide droplets in a mafic dike from Uruguay: implications for the origin of Cu-Ni-PGE sulfide deposits. Econ Geol 99:365–376

    Article  Google Scholar 

  • Puchtel IS, Humayun M, Campbell AJ, Sproule RA, Lesher CM (2004) Platinum group element geochemistry of komatiites from the Alexo and Pyke Hill areas, Ontario, Canada. Geochim Cosmochim Acta 68(6):1361–1383

    Article  Google Scholar 

  • Queffurus M, Barnes S-J (2014) Selenium and sulfur concentrations in country rocks from the Duluth Complex, Minnesota, USA: implications for formation of the Cu-Ni-PGE sulfides. Econ Geol 109(3):785–794

    Article  Google Scholar 

  • Ripley EM, Li C (2003) Sulfur isotope exchange and metal enrichment in the formation of magmatic Cu-Ni-(PGE) deposits. Econ Geol 98:635–641

    Article  Google Scholar 

  • Ripley EM, Lightfoot PC, Li C, Elswick ER (2003) Sulfur isotopic studies of continental flood basalts in the Noril’sk region: implications for the association between lavas and ore-bearing intrusions. Geochim Cosmochim Acta 67(15):2805–2817

    Article  Google Scholar 

  • Ripley EM, Li C, Moore CH, Schmitt AK (2010) Micro-scale S isotope studies of the Kharaelakh intrusion, Noril’sk region, Siberia: constraints on the genesis of coexisting anhydrite and sulfide minerals. Geochim Cosmochim Acta 74(2):634–644

    Article  Google Scholar 

  • Robertson J, Ripley EM, Barnes SJ, Li C (2015) Sulfur liberation from country rocks and incorporation in mafic magmas. Econ Geol 110(4):1111–1123

    Article  Google Scholar 

  • Robertson J, Barnes SJ, Le Vaillant M (2016) Dynamics of magmatic sulphide droplets during transport in silicate melts and implications for magmatic sulphide ore formation. J Petrol 56(12):2445–2472

    Article  Google Scholar 

  • Roelofse F, Ashwal LD (2012) The Lower main Zone in the Northern Limb of the Bushveld Complex–a >1.3 km thick sequence of intruded and variably contaminated crystal mushes. J Petrol 53(7):1449–1476

    Article  Google Scholar 

  • Rosso KM, Vaughan DJ (2006) Reactivity of sulfide mineral surfaces. Rev Mineral Geochem 61(1):557–607

    Article  Google Scholar 

  • Salama W, Anand RR (2017) Reconstructing the pre-Quaternary landscape in Agnew–Lawlers area, Western Australia with emphasis on the Permo-Carboniferous glaciation and post-glacial weathering. Int J Earth Sci 106(1):311–339

    Article  Google Scholar 

  • Samalens N, Barnes S-J, Sawyer EW (2017a) A laser ablation inductively coupled plasma mass spectrometry study of the distribution of chalcophile elements among sulfide phases in sedimentary and magmatic rocks of the Duluth Complex, Minnesota, USA. Ore Geol Rev 90:352–370

    Article  Google Scholar 

  • Samalens N, Barnes S-J, Sawyer EW (2017b) The role of black shales as a source of sulfur and semimetals in magmatic nickel-copper deposits: example from the Partridge River Intrusion, Duluth Complex, Minnesota, USA. Ore Geol Rev 81(1):173–187

    Article  Google Scholar 

  • Sarala P, Peuraniemi V (2007) Exploration using till geochemistry and heavy minerals in the ribbed moraine area of southern Finnish Lapland. Geochem: Explor Env A 7(3):195–205

    Google Scholar 

  • Sinyakova E, Kosyakov V, Distler V, Karmanov N (2016) Behavior of Pt, Pd, and Au during crystallization of Cu-rich magmatic sulfide minerals. Can Mineral 54(2):491–509

    Article  Google Scholar 

  • Sinyakova E, Kosyakov V, Palyanova G, Karmanov N (2019) Experimental modeling of noble and chalcophile elements fractionation during solidification of Cu-Fe-Ni-S melt. Minerals 9(9):531

    Article  Google Scholar 

  • Smith JW, Holwell D, McDonald I (2014) Precious and base metal geochemistry and mineralogy of the Grasvally Norite–Pyroxenite–Anorthosite (GNPA) member, northern Bushveld Complex, South Africa: implications for a multistage emplacement. Mineral Deposita 49(6):667–692

    Article  Google Scholar 

  • Sylvester P (2001) Laser ablation ICP-MS in the earth sciences: principles and applications. Mineralogical Association Canada Short Course Series 29:243 pp

  • Sylvester P (2008) Laser ablation ICP-MS in the earth sciences: current practices and outstanding issues. Mineralogical Association Canada Short Course Series 40:356 pp

  • Sylvester P, Cabri LJ, Tubrett MN, McMahon G, Laflamme JHG, Peregoedova A (2005) Synthesis and evaluation of a fused pyrrhotite standard reference material for platinum-group element and gold analysis by laser ablation ICP-MS. In: Tormanen TO, Alapieti TT (eds) Platinum-group elements–from genesis to beneficiation and environmental impact. 10th International Platinum Symposium, Oulu, Finland

    Google Scholar 

  • Sylvester P, Jackson SE (2016) A brief history of laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS). Elements 12(5):307–310

    Article  Google Scholar 

  • Thomas R (2013) Practical guide to ICP-MS: a tutorial for beginners. CRC Press, Boca Raton, 446 pp

    Book  Google Scholar 

  • Wang KL, O’Reilly SY, Griffin WL, Pearson NJ, Zhang M (2009) Sulfides in mantle peridotites from Penghu Islands, Taiwan: melt percolation, PGE fractionation, and the lithospheric evolution of the South China block. Geochim Cosmochim Acta 73(15):4531–4557

    Article  Google Scholar 

  • Wilson SA, Ridley WI, Koenig AE (2002) Development of sulfide calibration standards for the laser ablation inductively coupled plasma-mass spectrometry technique. J Anal Atom Spect 17:406–409

    Article  Google Scholar 

  • Wilson AH (2012) A chill sequence to the Bushveld Complex: insight into the first stage of emplacement and implications for the parental magmas. J Petrol 53(6):1123–1168

    Article  Google Scholar 

  • Wirth R, Reid D, Schreiber A (2013) Nanometer-sized platinum-group minerals (PGM) in base metal sulfides: new evidence for an orthomagmatic origin of the Merensky Reef PGE ore deposit, Bushveld Complex, South Africa. Can Mineral 51:143–155

    Article  Google Scholar 

  • Witt-Eickschen G, Palme H, O’neill HSC, Allen CM (2009) The geochemistry of the volatile trace elements As, Cd, Ga, In and Sn in the Earth’s mantle: new evidence from in situ analyses of mantle xenoliths. Geochim Cosmochim Acta 73(6):1755–1778

    Article  Google Scholar 

  • Wohlgemuth-Ueberwasser C, Jochum KP (2015) Capability of fs-LA-ICP-MS for sulfide analysis in comparison to ns-LA-ICP-MS: reduction of laser induced matrix effects? J Anal Atom Spectrom 30(12):2469–2480

    Article  Google Scholar 

  • Yudovskaya MA, Kinnaird JA, Grobler DF, Costin G, Abramova VD, Dunnett T, Barnes S-J (2017) Zonation of Merensky-style platinum-group element mineralization in Turfspruit thick reef facies (Northern Limb of the Bushveld Complex). Econ Geol 112(6):1333–1365

    Article  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the insightful discussions we had over the years with our colleagues Dany Savard, Belinda Godel, Philippe Pagé, Sarah Dare, Rubén Piña, Lionnel Djon, Matthias Queffurus, Clifford Patten, Jean-Philippe Arguin, Ben Cave, Luiz Felipe Salim Amaral, Renato Henrique-Pinto, Nadège Samalens, and Pape Doudou Tague. This manuscript benefited from insightful comments from the reviewers Margaux Le Vaillant and Malte Junge, and careful editorial handling by the editors Wolfgang Maier and Georges Beaudoin.

Funding

This work was supported by a Canada Research Chair program grant to Sarah-Jane Barnes (215503) and Discovery Grant 1884-2013. This contribution represents a synthesis of some work conducted over more than a decade by the Canada Research Chair in Magmatic Metallogeny after implementation of the LA-ICP-MS facility at LabMaTer, UQAC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo T. Mansur.

Additional information

Editorial handling: W. D. Maier

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary materials

ESM 1

(PDF 435 kb)

ESM 2

(XLSX 777 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansur, E.T., Barnes, SJ. & Duran, C.J. An overview of chalcophile element contents of pyrrhotite, pentlandite, chalcopyrite, and pyrite from magmatic Ni-Cu-PGE sulfide deposits. Miner Deposita 56, 179–204 (2021). https://doi.org/10.1007/s00126-020-01014-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-020-01014-3

Keywords

Navigation