Skip to main content
Log in

Rapid and sensitive fluorescence and smartphone dual-mode detection of dopamine based on nitrogen-boron co-doped carbon quantum dots

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A dual-mode fluorescence and colorimetric biosensor based on nitrogen-boron co-doped carbon quantum dot (N-B CQDs) for rapid and sensitive detection of dopamine (DA) was developed. The quantum dot luminescent materials, N-B CQDs, were prepared by a one-step microwave-assisted method. The N-B CQDs were characterized using SEM, HR-TEM, XRD, FT-IR, Raman, fluorescence, and UV-Vis techniques. The dual-mode assays of fluorescence and colorimetric methods were used for detection of DA. The high fluorescent N-B CQDs mediated turn-off assay for the facile room temperature detection of dopamine via inner filter effect (IFE) and Forster resonance energy transfer (FRET) processes at basic pH. The colorimetric detection of DA was also developed via in-house android application using a smartphone and N-B CQD solution-based nanosensor. The smartphone-based colorimetric biosensors generated more reliable information for quantitative analysis of color changes than the naked eye. Furthermore, a smartphone application with N-B CQD solution-based nanosensor was integrated to monitor the color changes through the DA addition. Wide linear ranges were achieved for DA in the ranges 0.25–50 μM and 5–500 μM with fluorescence and smartphone-based method, respectively. The satisfactory results of the dual-mode detection of DA, not only in aqueous solution, but also in human urine and serum biological sample demonstrated its potential application in biosensing, as a point of care diagnostic tool.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ao H, Qian Z, Zhu Y, Zhao M, Tang C, Huang Y, Feng H, Wang A (2016) A fluorometric biosensor based on functional u/Ag nanoclusters for real-time monitoring of tyrosinase activity. Biosens Bioelectron 86:542–547

    CAS  PubMed  Google Scholar 

  2. Ban R, Abdel-Halim E, Zhang J, Zhu J-J (2015) β-Cyclodextrin functionalised gold nanoclusters as luminescence probes for the ultrasensitive detection of dopamine. Analyst 140:1046–1053

    CAS  PubMed  Google Scholar 

  3. Bourlinos AB, Trivizas G, Karakassides MA, Baikousi M, Kouloumpis A, Gournis D, Bakandritsos A, Hola K, Kozak O, Zboril R (2015) Green and simple route toward boron doped carbon dots with significantly enhanced non-linear optical properties. Carbon 83:173–179

    CAS  Google Scholar 

  4. Breslauer DN, Maamari RN, Switz NA, Lam WA, Fletcher DA (2009) Mobile phone based clinical microscopy for global health applications. PLoS One 4:e6320

    PubMed  PubMed Central  Google Scholar 

  5. Chen X, Chen S, Ma Q (2017) Fluorescence detection of dopamine based on nitrogen-doped graphene quantum dots and visible paper-based test strips. Anal Methods 9:2246–2251

    CAS  Google Scholar 

  6. Chen J-Q, Xue S-F, Chen Z-H, Zhang S, Shi G, Zhang M (2018) GelRed/[G3T] 5/Tb3+ hybrid: a novel label-free ratiometric fluorescent probe for H2O2 and oxidase-based visual biosensing. Biosens Bioelectron 100:526–532

    CAS  PubMed  Google Scholar 

  7. Diaz-Diestra D, Thapa B, Beltran-Huarac J, Weiner BR, Morell G (2017) L-cysteine capped ZnS: Mn quantum dots for room-temperature detection of dopamine with high sensitivity and selectivity. Biosens Bioelectron 87:693–700

    CAS  PubMed  Google Scholar 

  8. Du Y, Guo S (2016) Chemically doped fluorescent carbon and graphene quantum dots for bioimaging, sensor, catalytic and photoelectronic applications. Nanoscale 8:2532–2543

    CAS  PubMed  Google Scholar 

  9. Fei H, Ye R, Ye G, Gong Y, Peng Z, Fan X, Samuel EL, Ajayan PM, Tour JM (2014) Boron-and nitrogen-doped graphene quantum dots/graphene hybrid nanoplatelets as efficient electrocatalysts for oxygen reduction. ACS Nano 8:10837–10843

    CAS  PubMed  Google Scholar 

  10. Fresco-Cala B, Soriano ML, Sciortino A, Cannas M, Messina F, Cardenas S (2018) One-pot synthesis of graphene quantum dots and simultaneous nanostructured self-assembly via a novel microwave-assisted method: impact on triazine removal and efficiency monitoring. RSC Adv 8:29939–29946

    CAS  Google Scholar 

  11. Guo X, Huang J, Zeng Q, Wei Y-b, Liu X, Wang L (2019) Boronic acid functionalized molybdenum disulfide quantum dots for ultrasensitive analysis of dopamine basing on synergistic quenched effects from IFE and aggregation. J Mater Chem B

  12. Hallaj T, Amjadi M, Song Z, Bagheri R (2018) Strong enhancement of the chemiluminescence of the Cu (II)-H2O2 system on addition of carbon nitride quantum dots, and its application to the detection of H2O2 and glucose. Microchim Acta 185:67

    Google Scholar 

  13. He Y-S, Pan C-G, Cao H-X, Yue M-Z, Wang L, Liang G-X (2018) Highly sensitive and selective dual-emission ratiometric fluorescence detection of dopamine based on carbon dots-gold nanoclusters hybrid. Sensors Actuators B Chem 265:371–377

    CAS  Google Scholar 

  14. Huang H, Li C, Zhu S, Wang H, Chen C, Wang Z, Bai T, Shi Z, Feng S (2014) Histidine-derived nontoxic nitrogen-doped carbon dots for sensing and bioimaging applications. Langmuir 30:13542–13548

    CAS  PubMed  Google Scholar 

  15. Karimzadeh A, Hasanzadeh M, Shadjou N, de la Guardia M (2018) Optical bio (sensing) using nitrogen doped graphene quantum dots: recent advances and future challenges. Trends Anal Chem 108:110–121

    CAS  Google Scholar 

  16. Kim JH, Park JH, Lee JH, Kim JS, Sim M, Shim C, Cho K (2010) Bulk heterojunction solar cells based on preformed polythiophene nanowires via solubility-induced crystallization. J Mater Chem 20(35):7398–7405

    CAS  Google Scholar 

  17. Kumari A, Kumar A, Sahu SK, Kumar S (2018) Synthesis of green fluorescent carbon quantum dots using waste polyolefins residue for Cu2+ ion sensing and live cell imaging. Sensors Actuators B Chem 254:197–205

    CAS  Google Scholar 

  18. Kundu S, Yadav RM, Narayanan T, Shelke MV, Vajtai R, Ajayan PM, Pillai VK (2015) Synthesis of N, F and S co-doped graphene quantum dots. Nanoscale 7:11515–11519

    CAS  PubMed  Google Scholar 

  19. Li Y, Zhao Y, Cheng H, Hu Y, Shi G, Dai L, Qu L (2011) Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J Am Chem Soc 134:15–18

    PubMed  Google Scholar 

  20. Li K, Liu W, Ni Y, Li D, Lin D, Su Z, Wei G (2017) Technical synthesis and biomedical applications of graphene quantum dots. J Mater Chem B 5:4811–4826

    CAS  PubMed  Google Scholar 

  21. Li X, Yang F, Wong JX, Yu H-Z (2017) Integrated smartphone-app-chip system for on-site parts-per-billion-level colorimetric quantitation of Aflatoxins. Anal Chem 89:8908–8916

    CAS  PubMed  Google Scholar 

  22. Li N, Liu SG, Fan YZ, Ju YJ, Xiao N, Luo HQ, Li NB (2018) Adenosine-derived doped carbon dots: from an insight into effect of N/P co-doping on emission to highly sensitive picric acid sensing. Anal Chim Acta 1013:63–70

    CAS  PubMed  Google Scholar 

  23. Liang L, Long Y, Zhang H, Wang Q, Huang X, Zhu R, Teng P, Wang X, Zheng H (2013) Visual detection of prion protein based on color complementarity principle. Biosens Bioelectron 50:14–18

    CAS  PubMed  Google Scholar 

  24. Liu Y, Duan W, Song W, Liu J, Ren C, Wu J, Liu D, Chen H (2017) Red emission B, N, S-co-doped carbon dots for colorimetric and fluorescent dual mode detection of Fe3+ ions in complex biological fluids and living cells. ACS Appl Mater Interfaces 9:12663–12672

    CAS  PubMed  Google Scholar 

  25. Liu H, Li N, Zhang H, Zhang F, Su X (2018) A simple and convenient fluorescent strategy for the highly sensitive detection of dopamine and ascorbic acid based on graphene quantum dots. Talanta 189:190–195

    CAS  PubMed  Google Scholar 

  26. Liu Y, Li W, Wu P, Ma C, Wu X, Xu M, Luo S, Xu Z, Liu S (2019) Hydrothermal synthesis of nitrogen and boron co-doped carbon quantum dots for application in acetone and dopamine sensors and multicolor cellular imaging. Sensors Actuators B Chem 281:34–43

    CAS  Google Scholar 

  27. Mao G, Du M, Wang X, Ji X, He Z (2018) Simple construction of ratiometric fluorescent probe for the detection of dopamine and tyrosinase by the naked eye. Analyst 143:5295–5301

    CAS  PubMed  Google Scholar 

  28. Nemiroski A, Christodouleas DC, Hennek JW, Kumar AA, Maxwell EJ, Fernández-Abedul MT, Whitesides GM (2014) Universal mobile electrochemical detector designed for use in resource-limited applications. Proc Natl Acad Sci U S A 111:11984–11989

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Park H-I, Park S-Y (2018) Smart fluorescent hydrogel glucose biosensing microdroplets with dual-mode fluorescence quenching and size reduction. ACS Appl Mater Interfaces 10:30172–30179

    CAS  PubMed  Google Scholar 

  30. Paterson S, De La Rica R (2015) Solution-based nanosensors for in-field detection with the naked eye. Analyst 140:3308–3317

    CAS  PubMed  Google Scholar 

  31. Shen L, Hagen JA, Papautsky I (2012) Point-of-care colorimetric detection with a smartphone. Lab Chip 12:4240–4243

    CAS  PubMed  Google Scholar 

  32. Shi Y, Pan Y, Zhang H, Zhang Z, Li M-J, Yi C, Yang M (2014) A dual-mode nanosensor based on carbon quantum dots and gold nanoparticles for discriminative detection of glutathione in human plasma. Biosens Bioelectron 56:39–45

    CAS  PubMed  Google Scholar 

  33. Song E, Yu M, Wang Y, Hu W, Cheng D, Swihart MT, Song Y (2015) Multi-color quantum dot-based fluorescence immunoassay array for simultaneous visual detection of multiple antibiotic residues in milk. Biosens Bioelectron 72:320–325

    CAS  PubMed  Google Scholar 

  34. Sun K, Yang Y, Zhou H, Yin S, Qin W, Yu J, Chiu DT, Yuan Z, Zhang X, Wu C (2018) Ultrabright polymer-dot transducer enabled wireless glucose monitoring via a smartphone. ACS Nano 12:5176–5184

    CAS  PubMed  Google Scholar 

  35. Tanwar AS, Patidar S, Ahirwar S, Dehingia S, Iyer PK (2019) “Receptor free” inner filter effect based universal sensors for nitroexplosive picric acid using two polyfluorene derivatives in the solution and solid states. Analyst 144(2):669–676

    CAS  PubMed  Google Scholar 

  36. Tian T, He Y, Ge Y, Song G (2017) One-pot synthesis of boron and nitrogen co-doped carbon dots as the fluorescence probe for dopamine based on the redox reaction between Cr (VI) and dopamine. Sensors Actuators B Chem 240:1265–1271

    CAS  Google Scholar 

  37. Van Tam T, Kang SG, Babu KF, Oh E-S, Lee SG, Choi WM (2017) Synthesis of B-doped graphene quantum dots as a metal-free electrocatalyst for the oxygen reduction reaction. J Mater Chem A 5:10537–10543

    Google Scholar 

  38. Wang L, Li B, Xu F, Shi X, Feng D, Wei D, Li Y, Feng Y, Wang Y, Jia D (2016) High-yield synthesis of strong photoluminescent N-doped carbon nanodots derived from hydrosoluble chitosan for mercury ion sensing via smartphone APP. Biosens Bioelectron 79:1–8

    CAS  PubMed  Google Scholar 

  39. Wang H, Sun P, Cong S, Wu J, Gao L, Wang Y et al (2016) Nitrogen-doped carbon dots for “green” quantum dot solar cells. Nanoscale Res Lett 11:27

    PubMed  PubMed Central  Google Scholar 

  40. Wang L, Li M, Li W, Han Y, Liu Y, Li Z, Zhang B, Pan D (2018) Rationally designed efficient dual-mode colorimetric/fluorescence sensor based on carbon dots for detection of pH and Cu2+ ions. ACS Sustain Chem Eng 6:12668–12674

    CAS  Google Scholar 

  41. Wang Y, Yang L, Liu B, Yu S, Jiang C (2018) A colorimetric paper sensor for visual detection of mercury ions constructed with dual-emission carbon dots. New J Chem 42:15671–15677

    CAS  Google Scholar 

  42. Wang J, Du R, Liu W, Yao L, Ding F, Zou P, Wang Y, Wang X, Zhao Q, Rao H (2019) Colorimetric and fluorometric dual-signal determination of dopamine by the use of Cu-Mn-O microcrystals and C-dots. Sensors Actuators B Chem

  43. Weng S, Liang D, Qiu H, Liu Z, Lin Z, Zheng Z, Liu A, Chen W, Lin X (2015) A unique turn-off fluorescent strategy for sensing dopamine based on formed polydopamine (pDA) using graphene quantum dots (GQDs) as fluorescent probe. Sensors Actuators B Chem 221:7–14

    CAS  Google Scholar 

  44. Xu Y, Wang X, Zhang WL, Lv F, Guo S (2018) Recent progress in two-dimensional inorganic quantum dots. Chem Soc Rev 47:586–625

    CAS  PubMed  Google Scholar 

  45. Yan X, Li H, Li Y, Su X (2014) Visual and fluorescent detection of acetamiprid based on the inner filter effect of gold nanoparticles on ratiometric fluorescence quantum dots. Anal Chim Acta 852:189–195

    CAS  PubMed  Google Scholar 

  46. Yao J, Zhang K, Zhu H, Ma F, Sun M, Yu H, Sun J, Wang S (2013) Efficient ratiometric fluorescence probe based on dual-emission quantum dots hybrid for on-site determination of copper ions. Anal Chem 85:6461–6468

    CAS  PubMed  Google Scholar 

  47. Yu H, Tan Y, Cunningham BT (2014) Smartphone fluorescence spectroscopy. Anal Chem 86:8805–8813

    CAS  PubMed  Google Scholar 

  48. Yue S, Sun X, Wang N, Wang Y, Wang Y, Xu Z, Chen M, Wang J (2017) SERS–fluorescence dual-mode pH-sensing method based on Janus microparticles. ACS Appl Mater Interfaces 9:39699–39707

    CAS  PubMed  Google Scholar 

  49. Zhang D, Liu Q (2016) Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosens Bioelectron 75:273–284

    CAS  PubMed  Google Scholar 

  50. Zhang B-X, Gao H, Li X-L (2014) Synthesis and optical properties of nitrogen and sulfur co-doped graphene quantum dots. New J Chem 38:4615–4621

    CAS  Google Scholar 

  51. Zhang H, Chen Y, Liang M, Xu L, Qi S, Chen H, Chen X (2014) Solid-phase synthesis of highly fluorescent nitrogen-doped carbon dots for sensitive and selective probing ferric ions in living cells. Anal Chem 86:9846–9852

    CAS  PubMed  Google Scholar 

  52. Zhang L, Zhang Z-Y, Liang R-P, Li Y-H, Qiu J-D (2014) Boron-doped graphene quantum dots for selective glucose sensing based on the “abnormal” aggregation-induced photoluminescence enhancement. Anal Chem 86:4423–4430

    CAS  PubMed  Google Scholar 

  53. Zhao J, Zhao L, Lan C, Zhao S (2016) Graphene quantum dots as effective probes for label-free fluorescence detection of dopamine. Sensors Actuators B Chem 223:246–251

    CAS  Google Scholar 

  54. Zhao X, Lei C, Wang Y, Qu F, Zhu S, Wang H, You J (2016) A fluorometric assay for tyrosinase activity and its inhibitor screening based on graphene quantum dots. RSC Adv 6:72670–72675

    CAS  Google Scholar 

  55. Zhao X, He D, Wang Y, Fu C (2018) Facile fabrication of tungsten disulfide quantum dots (WS2 QDs) as effective probes for fluorescence detection of dopamine (DA). Mater Chem Phys 207:130–134

    CAS  Google Scholar 

  56. Zheng B, Chen Y, Li P, Wang Z, Cao B, Qi F, Liu J, Qiu Z, Zhang W (2017) Ultrafast ammonia-driven, microwave-assisted synthesis of nitrogen-doped graphene quantum dots and their optical properties. Nanophotonics 6:259–267

    CAS  Google Scholar 

  57. Zhou X, Wang A, Yu C, Wu S, Shen J (2015) Facile synthesis of molecularly imprinted graphene quantum dots for the determination of dopamine with affinity-adjustable. ACS Appl Mater Interfaces 7:11741–11747

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mehdinia.

Ethics declarations

Informed consent was obtained from all individual participants involved in the study.

Conflict of interest

The authors declare that they have no competing of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 23907 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadkhah, S., Mehdinia, A., Jabbari, A. et al. Rapid and sensitive fluorescence and smartphone dual-mode detection of dopamine based on nitrogen-boron co-doped carbon quantum dots. Microchim Acta 187, 569 (2020). https://doi.org/10.1007/s00604-020-04543-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04543-w

Keywords

Navigation