Skip to main content
Log in

Herz Spaces Meet Morrey Type Spaces and Complementary Morrey Type Spaces

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We introduce local and global generalized Herz spaces. As one of the main results we show that Morrey type spaces and complementary Morrey type spaces are included into the scale of these Herz spaces. We also prove the boundedness of a class of sublinear operators in generalized Herz spaces with application to Morrey type spaces and their complementary spaces, based on the mentioned inclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, D.R.: Lectures on \(L^p\)-potential theory. University of Umeå. Preprint No. 2, pp. 1–74 (1981)

  2. Almeida, A., Drihem, D.: Maximal, potential and singular type operators on Herz spaces with variable exponents. J. Math. Anal. Appl. 394(2), 781–795 (2012)

    Article  MathSciNet  Google Scholar 

  3. Burenkov, V.I.: Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. I. Eurasian Math. J. 3(3), 11–32 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Burenkov, V.I.: Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. II. Eurasian Math. J. 4(1), 21–45 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Burenkov, V.I., Guliyevv, H.V.: Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces. Stud. Math. 163(2), 157–176 (2004)

    Article  MathSciNet  Google Scholar 

  6. Burenkov, V.I., Guliyev, H.V., Guliyev, V.S.: Necessary and sufficient conditions for the boundedness of fractional maximal operators in local Morrey-type spaces. J. Comput. Appl. Math. 208(1), 280–301 (2007)

    Article  MathSciNet  Google Scholar 

  7. Feichtinger, H.G.: Choosing function spaces in harmonic analysis. In: Excursions in Harmonic Analysis, vol. 4. Series: Applied and Numerical Harmonic Analysis, pp. 65–101. Birkhäuser, Basel (2015)

  8. Feichtinger, H.G., Weisz, F.: Herz spaces and summability of Fourier transforms. Math. Nachr. 281(3), 309–324 (2008)

    Article  MathSciNet  Google Scholar 

  9. Flett, T.M.: Some elementary inequalities for integrals with applications to Fourier transforms. Proc. Lond. Math. Soc. 29, 538–556 (1974)

    Article  MathSciNet  Google Scholar 

  10. Grafakos, L., Li, X., Yang, D.: Bilinear operators on Herz-type Hardy spaces. Trans. Am. Math. Soc. 350(3), 1249–1275 (1998)

    Article  MathSciNet  Google Scholar 

  11. Guliyev, V.S.: Integral operators on function spaces on the homogeneous groups and on domains in \({\mathbb{R}}^n \) (in Russian), pp. 1–329. D.Sc. dissertation, Steklov Mathematics Institute, Moscow (1994)

  12. Guliyev, V.S.: Function spaces, integral operators and two weighted inequalities on homogeneous groups. Some Application (in Russian), Casioglu, Baku (1999)

  13. Guliyev, V.S., Mustafayev, RCh.: Fractional integrals in spaces of functions defined on spaces of homogeneous type (in Russian). Math. Anal. 24(3), 181–200 (1998)

    Article  MathSciNet  Google Scholar 

  14. Hernández, E., Yang, D.: Interpolation of Herz spaces and applications. Math. Nachr. 205(1), 69–87 (1999)

    Article  MathSciNet  Google Scholar 

  15. Herz, C.S.: Lipschitz spaces and Bernstein’s theorem on absolutely convergent Fourier transforms. J. Math. Mech. 18, 283–323 (1968/1969)

  16. Izuki, M.: Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization. Anal. Math. 13(36), 33–50 (2010)

    Article  MathSciNet  Google Scholar 

  17. Johnson, R.: Temperatures, Riesz potentials and the Lipschitz spaces of Herz. Proc. Lond. Math. Soc. 27(2), 290–316 (1973)

    Article  MathSciNet  Google Scholar 

  18. Johnson, R.: Lipschitz spaces, Littlewood–Paley spaces, and convoluteurs. Proc. Lond. Math. Soc. 29(1), 127–141 (1974)

    Article  MathSciNet  Google Scholar 

  19. Kokilashvili, V., Meskhi, A., Rafeiro, H., Samko, S.: Integral operators in non-standard function spaces, vol. 1, Oper. Theory Adv. Appl., vol. 248. Birkhäuser, Basel (2016)

  20. Kokilashvili, V., Meskhi, A., Rafeiro, H., Samko, S.: Integral Operators in Non-standard Function Spaces, vol. 2. Operator Theory: Advances and Applications, vol. 249. Birkhäuser, Basel (2016)

  21. Komori, Y.: Notes on singular integrals on some inhomogeneous Herz spaces. Taiwan. J. Math. 8(3), 547–556 (2004)

    Article  MathSciNet  Google Scholar 

  22. Kufner, A., Persson, L.-E., Samko, N.: Weighted Inequalities of Hardy Type, 2nd edn. World Scientific, Singapore (2017)

    Book  Google Scholar 

  23. Li, X., Yang, D.: Boundedness of some sublinear operators on Herz spaces. Ill. J. Math. 40, 484–501 (1996)

    Article  MathSciNet  Google Scholar 

  24. Matuszewska, W., Orlicz, W.: On certain properties of \(\varphi \)-functions. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 8, 439–443 (1960)

    MATH  Google Scholar 

  25. Matuszewska, W., Orlicz, W.: On some classes of functions with regard to their orders of growth. Stud. Math. 26, 11–24 (1965)

    Article  MathSciNet  Google Scholar 

  26. Meskhi, A., Rafeiro, H., Zaighum, M.A.: Central Calderón–Zygmund operators on Herz-type Hardy spaces of variable smoothness and integrability. Ann. Funct. Anal. 9(3), 310–321 (2018)

    Article  MathSciNet  Google Scholar 

  27. Meskhi, A., Rafeiro, H., Zaighum, M.A.: On the boundedness of Marcinkiewicz integrals on continual variable exponent Herz spaces. Georgian Math. J. 26(1), 105–116 (2019)

    Article  MathSciNet  Google Scholar 

  28. Nafis, H., Rafeiro, H., Zaighum, M.A.: A note on the boundedness of sublinear operators on grand variable Herz spaces. J. Inequal. Appl. 1, 2020 (2020)

    MathSciNet  Google Scholar 

  29. Rafeiro, H., Samko, S.: Riesz potential operator in continual variable exponents Herz spaces. Math. Nachr. 288(4), 465–475 (2015)

    Article  MathSciNet  Google Scholar 

  30. Rafeiro, H., Samko, S.: Maximal operator with rough kernel in variable Musielak—Morrey–Orlicz type spaces, variable Herz spaces and grand variable Lebesgue spaces. Integral Equ. Oper. Theory 89(1), 111–124 (2017)

    Article  MathSciNet  Google Scholar 

  31. Rafeiro, H., Samko, N., Samko, S.: Morrey–Campanato spaces: an overview. In: Operator Theory, Pseudo-Differential Equations, and Mathematical Physics, vol. 228 of Operator Theory: Advances and Applications, pp. 293–324. Birkhäuser, Basel (2013)

  32. Samko, N.: Weighted Hardy operators in the local generalized vanishing Morrey spaces. Positivity 17(3), 683–706 (2013)

    Article  MathSciNet  Google Scholar 

  33. Samko, S.: Variable exponent Herz spaces. Mediterr. J. Math. 10(4), 2007–2025 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research of H. Rafeiro was supported by a Research Start-up Grant of United Arab Emirates University, Al Ain, United Arab Emirates via Grant No. G00002994. The research of S. Samko was supported by Russian Foundation for Basic Research under the grants 19-01-00223 and 18-01-00094-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humberto Rafeiro.

Additional information

Communicated by Winfried Sickel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix on Matuszewska–Orlicz (M.O.) Indices

Appendix on Matuszewska–Orlicz (M.O.) Indices

The indices called Matuszewska–Orlicz indices were introduced in [24, 25]. They are widely used in the literature, for instance, [19, 31], see also a good presentation of them in the Appendix of [32]. These indices are closely related with the property of a function to be almost increasing or almost decreasing after multiplication (division) by a power function.

For a positive function \(\omega \) on \( {\mathbb {R}} _+ \) these indices are defined as follows:

$$\begin{aligned} m_0(\omega )= & {} \sup _{0<t<1} \frac{ \ln \left( \varlimsup _{h \rightarrow 0} \frac{\omega (ht)}{\omega (h)} \right) }{ \ln t} = \lim _{t \rightarrow 0} \frac{ \ln \left( \varlimsup _{h \rightarrow 0} \frac{\omega (ht)}{\omega (h)} \right) }{ \ln t}, \end{aligned}$$
(22)
$$\begin{aligned} M_0(\omega )= & {} \sup _{t>1} \frac{ \ln \left( \varlimsup _{h \rightarrow 0} \frac{\omega (ht)}{\omega (h)} \right) }{ \ln t} = \lim _{t \rightarrow \infty } \frac{ \ln \left( \varlimsup _{h \rightarrow 0} \frac{\omega (ht)}{\omega (h)} \right) }{ \ln t}, \end{aligned}$$
(23)
$$\begin{aligned} m_\infty \left( \omega \right)= & {} \sup _{t>1} \frac{\ln \left( \varliminf _{h \rightarrow \infty } \frac{\omega (ht)}{\omega (h)} \right) }{ \ln t}, \quad M_\infty \left( \omega \right) = \inf _{t>1} \frac{\ln \left( \varlimsup _{h \rightarrow \infty } \frac{\omega (ht)}{\omega (h)} \right) }{ \ln t}. \end{aligned}$$
(24)

The following estimates are known (cf. [32, (6.22)–(6.23)])

$$\begin{aligned} c_1 t ^{M_0(\omega )+ \varepsilon } \leqslant \inf _{0<\tau<1} \frac{\omega (ty)}{\omega (\tau )}, \quad \sup _{0<\tau<1} \frac{\omega (t\tau )}{\omega (\tau )} \leqslant c_2 t ^{m_0(\omega )- \varepsilon }, \quad 0<x<1, \end{aligned}$$
(25)

and

$$\begin{aligned} c_1 t ^{m_ \infty (\omega )- \varepsilon } \leqslant \inf _{\tau>1} \frac{\omega (t\tau )}{\omega (\tau )}, \quad \sup _{\tau>1} \frac{\omega (t\tau )}{\omega (\tau )} \leqslant c_2 t ^{M_\infty (\omega )+ \varepsilon }, \quad x>1. \end{aligned}$$
(26)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafeiro, H., Samko, S. Herz Spaces Meet Morrey Type Spaces and Complementary Morrey Type Spaces. J Fourier Anal Appl 26, 74 (2020). https://doi.org/10.1007/s00041-020-09778-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-020-09778-y

Keywords

Mathematics Subject Classification

Navigation