Skip to main content
Log in

Liouvillian Integrability and the Poincaré Problem for Nonlinear Oscillators with Quadratic Damping and Polynomial Forces

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

The upper bound on the degrees of irreducible Darboux polynomials associated to the ordinary differential equations \( x_{tt}+\varepsilon {x_{t}}^{2}+\eta x_{t}+f(x)=0 \) with \( f(x)\in \mathbb {C}[x]\setminus \mathbb {C} \) and ε ≠ 0 is derived. The availability of this bound provides the solution of the Poincaré problem. Results on uniqueness and existence of Darboux polynomials are presented. The problem of Liouvillian integrability for related dynamical systems is solved completely. It is proved that Liouvillian first integrals exist if and only if η = 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bruno AD. Asymptotic behaviour and expansions of solutions of an ordinary differential equation. Rus Math Surv. 2004;59(3):429–81. https://doi.org/10.1070/rm2004v059n03abeh000736.

    Article  Google Scholar 

  2. Christopher C. Invariant algebraic curves and conditions for a centre. Proc R Soc Edinb: Sect A Math 1994;124(6):1209–29. https://doi.org/10.1017/S0308210500030213.

    Article  MathSciNet  Google Scholar 

  3. Cveticanin L. Oscillator with strong quadratic damping force. Publications de L’Institut Mathematique Nouv Sér 2009;85(99):119–30. https://doi.org/10.2298/PIM0999119C.

    Article  MathSciNet  Google Scholar 

  4. Cveticanin L, Zukovic M, Mester GY, Biro I, Sarosi J. Oscillators with symmetric and asymmetric quadratic nonlinearity. Acta Mech 2016; 227(6):1727–42. https://doi.org/10.1007/s00707-016-1582-9.

    Article  MathSciNet  Google Scholar 

  5. Darboux G. De l’emploi des solutions particuliéres algébriques dans l’intégration des systèmes d’équations différentielles algébriques. Acad Sci Paris C R 1878;86:1012–4.

    MATH  Google Scholar 

  6. Demina MV. Invariant algebraic curves for Liénard dynamical systems revisited. Appl Math Lett 2018;84:42–8. https://doi.org/10.1016/j.aml.2018.04.013.

    Article  MathSciNet  Google Scholar 

  7. Demina MV. Invariant surfaces and Darboux integrability for non–autonomous dynamical systems in the plane. J Phys A: Math Theor 2018;51:505202. https://doi.org/10.1088/1751-8121/aaecca.

    Article  MathSciNet  Google Scholar 

  8. Demina MV. Novel algebraic aspects of Liouvillian integrability for two-dimensional polynomial differential systems. Phys Lett A 2018;382(20):1353–60. https://doi.org/10.1016/j.physleta.2018.03.037.

    Article  MathSciNet  Google Scholar 

  9. Demina MV, Sinelshchikov DI. Integrability properties of cubic Liénard oscillators with linear damping. Symmetry 2019;11:1378. https://doi.org/10.3390/sym11111378.

    Article  Google Scholar 

  10. Demina MV, Sinelshchikov DI. On the integrability of some forced nonlinear oscillators. Int J Non-Linear Mech 2020;121:103439. https://doi.org/10.1016/j.ijnonlinmec.2020.103439.

    Article  Google Scholar 

  11. Demina MV, Valls C. 2019. On the Poincaré problem and Liouvillian integrability of quadratic Liénard differential equations. Proc R Soc Edinb Sec A: Math. https://doi.org/10.1017/prm.2019.63.

  12. Demina MV, Valls C. Classification of invariant algebraic curves and nonexistence of algebraic limit cycles in quadratic systems from family (I) of the Chinese classification. Int J Bifurc Chaos 2020;30(4):2050056. https://doi.org/10.1142/S021812742050056X.

    Article  MathSciNet  Google Scholar 

  13. Giné J, Valls C. Liouvillian integrability of a general Rayleigh–Duffing oscillator. J Nonlinear Math Phys 2019;26:169–87. https://doi.org/10.1080/14029251.2019.1591710.

    Article  MathSciNet  Google Scholar 

  14. Gontsov RR, Goryuchkina IV. On the convergence of generalized power series satisfying an algebraic ODE. Asymptot Anal 2015;93(4):311–25. https://doi.org/10.3233/ASY-151297.

    Article  MathSciNet  Google Scholar 

  15. Goriely A. Integrability and nonintegrability of dynamical systems. Singapore: World Scientific; 2001. https://doi.org/10.1142/3846.

    Book  Google Scholar 

  16. Ilyashenko Y, Yakovenko S. 2008. Lectures on analytic differential equations, vol 86. Graduate Studies in Mathematics, American Mathematical Society. ISBN 978-0-8218-3667-5.

  17. Kovacic I, Rakaric Z. Study of oscillators with a non-negative real-power restoring force and quadratic damping. Nonlinear Dyn 2011;64(3):293–304. https://doi.org/10.1007/s11071-010-9861-9.

    Article  MathSciNet  Google Scholar 

  18. Lai SK, Chow KW. Exact solutions for oscillators with quadratic damping and mixed-parity nonlinearity. Phys Scr 2012;85(4):1–6. https://doi.org/10.1088/0031-8949/85/04/045006.

    Article  Google Scholar 

  19. Linz SJ, Hanggi P. Effect of vertical vibrations on avalanches in granular systems. Phys Rev E 1994;50(5):3464–9. https://doi.org/10.1103/PhysRevE.50.3464.

    Article  Google Scholar 

  20. Linz SJ, Hanggi P. Minimal model for avalanches in granular systems. Phys Rev E 1994;51(3):2538–42. https://doi.org/10.1103/PhysRevE.51.2538.

    Article  Google Scholar 

  21. Marinca V, Herişanu N. The oscillator with linear and cubic elastic restoring force and quadratic damping. Dynamical systems: theoretical and experimental analysis. In: Awrejcewicz J, editors. Switzerland: Springer International Publishing; 2016. p. 215–24. https://doi.org/10.1007/978-3-319-42408-8-18.

  22. Olvera A, Prado E, Czitrom S. Parametric resonance in an oscillating water column. J Eng Math 2007;57(1):1–21. https://doi.org/10.1007/s10665-006-9048-z.

    Article  Google Scholar 

  23. Poincaré H. Sur l’intégration algébrique des équations differentielles du premier ordre et du premier degré. Rend Circ Mat Palermo 1891;5:161–91.

    Article  Google Scholar 

  24. Prelle MJ, Singer MF. Elementary first integrals of differential equations. Trans Am Math Soc 1983;279(1):215–29. https://doi.org/10.1145/800206.806368.

    Article  MathSciNet  Google Scholar 

  25. Singer MF. Liouvillian first integrals of differential equations. Trans Am Math Soc 1992;333(2):673–88. https://doi.org/10.2307/2154053.

    Article  MathSciNet  Google Scholar 

  26. Tiwari AK, Pandey SN, Senthilvelan M, Lakshmanan M. Classification of Lie point symmetries for quadratic Liénard type equation \( \ddot x+f(x){\dot x}^{2}+g(x)=0 \). J Math Phys 2013;54(5):053506. https://doi.org/10.1063/1.4803455.

    Article  MathSciNet  Google Scholar 

  27. Zhang X. Integrability of dynamical systems: algebra and analysis. Singapore: Springer; 2017. https://doi.org/10.1007/978-981-10-4226-3.

    Book  Google Scholar 

Download references

Acknowledgments

We would like to thank the reviewers for their helpful comments and suggestions that greatly contributed to improving the final version of the article.

Funding

This research was supported by Russian Science Foundation grant 19–71–10003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria V. Demina.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demina, M.V., Kuznetsov, N.S. Liouvillian Integrability and the Poincaré Problem for Nonlinear Oscillators with Quadratic Damping and Polynomial Forces. J Dyn Control Syst 27, 403–415 (2021). https://doi.org/10.1007/s10883-020-09513-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-020-09513-2

Keywords

Mathematics Subject Classification (2010)

Navigation