Skip to main content

Advertisement

Log in

A Fuzzy Dematel Method To Evaluate The Most Common Diseases In Internal Medicine

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Most patients have more than one disease, and these diseases are able to affect one another. In modern medicine, the etiology and pathophysiology of diseases are well known in detail. However, inter-disease relationships are still mysterious. Physicians’ knowledge and experience have great importance in such a multi-criteria case. Because medical doctors in internal medicine clinics deal with large numbers of patients with multiple diseases, they have quite a complex approach in treating illness. In this context, exposing the cause-and-effect relationships among diseases frequently seen in internal medicine will contribute to physicians’ ability to blend profound theoretical knowledge with experiential results. Therefore, this study presents a fuzzy DEMATEL (Decision-Making Trial-and-Evaluation Laboratory) method to assess the most common diseases in internal medicine outpatient clinics. The DEMATEL method allows one to identify and analyze significant diseases in internal medicine by considering the cause-and-effect relationship diagram. Likewise, fuzzy sets in DEMATEL overcome the uncertainty in making decisions about disease relationships and internal medicine experts’ judgments. When investigating the results, we have found dyspepsia, hyperlipidemia, and anemia to be crucial in terms of causes. When evaluating the effects, the most notable diseases are understood to be renal failure, malignancy, and hepatitis. The results indicate that in the presented study, we could successfully apply these methods to reveal the cause–effect of diseases. The results of this study will contribute to understanding the complex multi-criteria relationship among internal diseases using internists’ opinions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fauci, A. S., and others, Harrison’s principles of internal medicine, vol. 2. McGraw-Hill, Medical Publishing Division New York, 2008

  2. Malani, P.N.: Harrison’s principles of internal medicine. JAMA 308(17), 1813–1814 (2012). https://doi.org/10.1001/jama.308.17.1813-b

    Article  Google Scholar 

  3. Clarke, K., et al.: A methodology for evaluation of knowledge-based systems in medicine. Artif. Intell. Med. 6(2), 107–121 (1994). https://doi.org/10.1016/0933-3657(94)90040-X

    Article  Google Scholar 

  4. Lucas, P.J.F.: Logic engineering in medicine. Knowl. Eng. Rev. 10(02), 153 (1995). https://doi.org/10.1017/S0269888900008134

    Article  Google Scholar 

  5. Phuong, N.H., Kreinovich, V.: Fuzzy logic and its applications in medicine. Int. J. Med. Inform. 62(2–3), 165–173 (2001). https://doi.org/10.1016/S1386-5056(01)00160-5

    Article  Google Scholar 

  6. Pandey, B., Mishra, R.B.: Knowledge and intelligent computing system in medicine. Comput. Biol. Med. 39(3), 215–230 (2009). https://doi.org/10.1016/j.compbiomed.2008.12.008

    Article  Google Scholar 

  7. Gross, H.-J., Verwer, B., Houck, D., Hoffman, R.A., Recktenwald, D.: Model study detecting breast cancer cells in peripheral blood mononuclear cells at frequencies as low as 10 (-7). Proc. Natl. Acad. Sci. 92(2), 537–541 (1995). https://doi.org/10.1073/pnas.92.2.537

    Article  Google Scholar 

  8. Ezzell, G.A.: Genetic and geometric optimization of three-dimensional radiation therapy treatment planning. Med. Phys. 23(3), 293–305 (1996). https://doi.org/10.1118/1.597660

    Article  Google Scholar 

  9. Arabasadi, Z., Alizadehsani, R., Roshanzamir, M., Moosaei, H., Yarifard, A.A.: Computer aided decision making for heart disease detection using hybrid neural network-Genetic algorithm. Comput. Methods. Program. Biomed. 141, 19–26 (2017). https://doi.org/10.1016/j.cmpb.2017.01.004

    Article  Google Scholar 

  10. Mahfouf, M., Abbod, M.F., Linkens, D.A.: A survey of fuzzy logic monitoring and control utilisation in medicine. Artif. Intell. Med. 21(1–3), 27–42 (2001). https://doi.org/10.1016/S0933-3657(00)00072-5

    Article  Google Scholar 

  11. Bates, J.H., Young, M.P.: Applying fuzzy logic to medical decision making in the intensive care unit. Am. J. Respir. Crit. Care Med. 167(7), 948–952 (2003). https://doi.org/10.1164/rccm.200207-777CP

    Article  Google Scholar 

  12. Barro, S., Marín, R.: Fuzzy logic in medicine, vol. 83. Physica-Verlag, New York (2013)

    MATH  Google Scholar 

  13. Korenevskiy, N.: Application of fuzzy logic for decision-making in medical expert systems. Biomed. Eng. 49(1), 46–49 (2015). https://doi.org/10.1007/s10527-015-9494-x

    Article  Google Scholar 

  14. Lee, C.-C.: Fuzzy logic in control systems: fuzzy logic controller. I. IEEE. Transac. Syst. Man. Cybern. 20(2), 404–418 (1990). https://doi.org/10.1109/21.52551

    Article  MathSciNet  MATH  Google Scholar 

  15. Ross, T.J.: Fuzzy logic with engineering applications. Wiley, Hoboken (2009)

    Google Scholar 

  16. Susilawati, A., Tan, J., Bell, D., Sarwar, M.: Fuzzy logic based method to measure degree of lean activity in manufacturing industry. J. Manuf. Syst. 34, 1–11 (2015). https://doi.org/10.1016/j.jmsy.2014.09.007

    Article  Google Scholar 

  17. Karatop, B., Kubat, C., Uygun, Ö.: Talent management in manufacturing system using fuzzy logic approach. Comput. Ind. Eng. 86, 127–136 (2015). https://doi.org/10.1016/j.cie.2014.09.015

    Article  Google Scholar 

  18. Başhan, V., Demirel, H.: Evaluation of critical operational faults of marine diesel generator engines by using DEMATEL method. J. ETA. Marit. Sci. 6(2), 119–128 (2018). https://doi.org/10.5505/jems.2018.24865

    Article  Google Scholar 

  19. Başhan, V., Demirel, H.: Application of fuzzy dematel technique to assess most common critical operational faults of marine boilers. Politeknik. Dergisi. 22(3), 545–555 (2019). https://doi.org/10.2339/politeknik.426644

    Article  Google Scholar 

  20. Krishnapuram, R., Keller, J.M.: A possibilistic approach to clustering. IEEE. Trans. Fuzzy. Syst. 1(2), 98–110 (1993). https://doi.org/10.1109/91.227387

    Article  Google Scholar 

  21. Vaidyanathan, M., et al.: Comparison of supervised MRI segmentation methods for tumor volume determination during therapy. Magn. Reson. Imag. 13(5), 719–728 (1995). https://doi.org/10.1016/0730-725X(95)00012-6

    Article  Google Scholar 

  22. Yao, J., Dash, M., Tan, S., Liu, H.: Entropy-based fuzzy clustering and fuzzy modeling. Fuzzy. Sets. Syst. 113(3), 381–388 (2000)

    MATH  Google Scholar 

  23. Shieh, J.-I., Wu, H.-H., Huang, K.-K.: A DEMATEL method in identifying key success factors of hospital service quality. Knowl.-Based. Syst. 23(3), 277–282 (2010). https://doi.org/10.1016/j.knosys.2010.01.013

    Article  Google Scholar 

  24. Liu, H.-C., You, J.-X., Lu, C., Chen, Y.-Z.: Evaluating health-care waste treatment technologies using a hybrid multi-criteria decision making model. Renew. Sustain. Energy. Rev. 41, 932–942 (2015). https://doi.org/10.1016/j.rser.2014.08.061

    Article  Google Scholar 

  25. Ghadami, L., Masoudi, I., Hessam, S., Modiri, M.: Developing hospital accreditation standards: applying fuzzy DEMATEL. Int. J. Healthc. Manag. (2019). https://doi.org/10.1080/20479700.2019.1702307

    Article  Google Scholar 

  26. Mahmoudi, S., Jalali, A., Ahmadi, M., Abasi, P., Salari, N.: Identifying critical success factors in Heart Failure Self-Care using fuzzy DEMATEL method. Appl. Soft. Comput. 84, 105729 (2019). https://doi.org/10.1016/j.asoc.2019.105729

    Article  Google Scholar 

  27. Nilashi, M., et al.: Factors influencing medical tourism adoption in Malaysia: a DEMATEL-Fuzzy TOPSIS approach. Comput. Ind. Eng. 137, 106005 (2019). https://doi.org/10.1016/j.cie.2019.106005

    Article  Google Scholar 

  28. Zhu, T., Luo, L., Liao, H., Zhang, X., Shen, W.: A hybrid multi-criteria decision making model for elective admission control in a Chinese public hospital. Knowl. Based. Syst. 173, 37–51 (2019). https://doi.org/10.1016/j.knosys.2019.02.020

    Article  Google Scholar 

  29. Jiang, S., Shi, H., Lin, W., Liu, H.-C.: A large group linguistic Z-DEMATEL approach for identifying key performance indicators in hospital performance management. Appl. Soft. Comput. 86, 105900 (2020). https://doi.org/10.1016/j.asoc.2019.105900

    Article  Google Scholar 

  30. Jeng, D.J.-F., Tzeng, G.-H.: Social influence on the use of clinical decision support systems: revisiting the unified theory of acceptance and use of technology by the fuzzy DEMATEL technique. Comput. Ind. Eng. 62(3), 819–828 (2012). https://doi.org/10.1016/j.cie.2011.12.016

    Article  Google Scholar 

  31. Reyna, V.F., Lloyd, F.J.: Physician decision making and cardiac risk: effects of knowledge, risk perception, risk tolerance, and fuzzy processing. J. Exp. Psychol. Appl. 12(3), 179–195 (2006). https://doi.org/10.1037/1076-898X.12.3.179

    Article  Google Scholar 

  32. Fathi-Torbaghan, M., Meyer, D.: MEDUSA: a fuzzy expert system for medical diagnosis of acute abdominal pain. Methods. Inf. Med. 33(05), 522–529 (1994). https://doi.org/10.1055/s-0038-1635055

    Article  Google Scholar 

  33. Abbod, M.F., von Keyserlingk, D.G., Linkens, D.A., Mahfouf, M.: Survey of utilisation of fuzzy technology in Medicine and Healthcare. Fuzzy. Sets. Syst. 120(2), 331–349 (2001). https://doi.org/10.1016/S0165-0114(99)00148-7

    Article  MathSciNet  Google Scholar 

  34. Adlassnig, K.-P.: A fuzzy logical model of computer-assisted medical diagnosis. Methods. Inf. Med. 19(03), 141–148 (1980)

    Google Scholar 

  35. Adlassnig, K.-P.: Fuzzy set theory in medical diagnosis. IEEE. Transact. Syst. Man. Cybern. 16(2), 260–265 (1986). https://doi.org/10.1109/TSMC.1986.4308946

    Article  Google Scholar 

  36. Zadeh, L. A., “Fuzzy sets,” In Fuzzy Sets, Fuzzy Logic, And Fuzzy Systems: Selected Papers by Lotfi A Zadeh, World Scientific, 1996, pp. 394–432

  37. Chen-Yi, H., Ke-Ting, C., Gwo-Hshiung, T.: FMCDM with fuzzy DEMATEL approach for customers’ choice behavior model. Int. J. Fuzzy. Syst. 9(4), 545–555 (2007)

    MathSciNet  Google Scholar 

  38. Wu, W.-W., Lee, Y.-T.: Developing global managers’ competencies using the fuzzy DEMATEL method. Expert Syst. Appl. 32(2), 499–507 (2007)

    Google Scholar 

  39. Liou, J.J., Yen, L., Tzeng, G.-H.: Building an effective safety management system for airlines. J. Air. Transp. Manag. 14(1), 20–26 (2008). https://doi.org/10.1016/j.jairtraman.2007.10.002

    Article  Google Scholar 

  40. Akyuz, E., Celik, E.: A fuzzy DEMATEL method to evaluate critical operational hazards during gas freeing process in crude oil tankers. J. Loss Prev. Process Ind. 38, 243–253 (2015). https://doi.org/10.1016/j.jlp.2015.10.006

    Article  Google Scholar 

  41. Başhan, V., Ust, Y.: Application of fuzzy dematel method to analyse s-CO2 Brayton power systems. IFS 37(6), 8483–8498 (2019). https://doi.org/10.3233/JIFS-191133

    Article  Google Scholar 

  42. Gumus, A.T., Yayla, A.Y., Çelik, E., Yildiz, A.: A combined fuzzy-AHP and fuzzy-GRA methodology for hydrogen energy storage method selection in Turkey. Energies 6(6), 3017–3032 (2013). https://doi.org/10.3390/en6063017

    Article  Google Scholar 

  43. Ward, B.W., Schiller, J.S.: Prevalence of multiple chronic conditions among US adults: estimates from the National Health Interview Survey, 2010. Prev. Chronic. Dis. 10, 120203 (2013). https://doi.org/10.5888/pcd10.120203

    Article  Google Scholar 

  44. Shams, S., et al.: The prevalence of iron deficiency anaemia in female medical students in Tehran. Singapore Med. J. 51(2), 116 (2010)

    Google Scholar 

  45. Guyton, A.C., Hall, J.E.: Textbook of medical physiology. Elsevier Saunders, Philadelphia (2006)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank engineer Mr. Veysi Başhan (Research Assistant at Yildiz Technical University, Istanbul, Turkey) for sharing his profound knowledge about the application of the fuzzy DEMATEL method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veysel Suzan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests. This research did not receive any specific grant. No funding used. No conflict of interest declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzan, V., Yavuzer, H. A Fuzzy Dematel Method To Evaluate The Most Common Diseases In Internal Medicine. Int. J. Fuzzy Syst. 22, 2385–2395 (2020). https://doi.org/10.1007/s40815-020-00921-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-00921-x

Keywords

Navigation