Skip to main content
Log in

Investigation of neutron-induced reaction cross section calculations for the fusion reactor structural materials using artificial neural networks

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Using artificial neural networks for an estimation of the nuclear reaction cross section data is discussed. Approximately rate of the fitting criteria is determined by the calculated experimental data obtained from using Variable Learning Rate Backpropagation (traingdx) algorithm in artificial neural networks. This method has been applied to obtain the cross section for 14–15 MeV neutron-induced (n,α) and (n,p) reactions in the fusion reactor structural materials. In comparison to the reaction cross section calculation by experimental cross sections reported in EXFOR, TALYS 1.9 and EMPIRE 3.2, the proposed method has better prediction ability when the target output has a large variation between the experimental and the calculated data. This study is substantial for the new method validation development of the nuclear model approaches with the increased prediction power of the neutron-induced reactions for fusion reactor systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S J Zinkle and J T Busby Structural materials for fission & fusion energy. Materials Science and Technology Division, Oak Ridge National Laboratory, USA. ISSN:1369 7021 12(11) 12 (2009)

  2. A K Suri, N Krishnamurthy and I S Batra J. Phys. Conf. Ser. 208 1 (2010)

  3. A M Stoneham, J R Matthews and I J Ford J. Phys. Condens. Matter 16 2597 (2004)

    ADS  Google Scholar 

  4. A J Koning, M C Duijvestijn, S C van der Marck, R Klein Meulekamp and A Hogenbirk Nuclear Sci. Eng. 156(3) 357 (2007)

  5. A Kaplan and V Çapalı J. Fusion Energy 33(3) 299 (2014)

    Article  Google Scholar 

  6. A Kaplan, I H Sarpun, A Aydın, E Tel, V Çapalı and H Özdoǧan Phys. Atom Nucl. 78(1) 53 (2015)

    Article  ADS  Google Scholar 

  7. A Aydin, H Pekdogan, A Kaplan I H Sarpun, E Tel and B Demir J. Fusion Energy 34(5) 1105 (2015)

    Article  Google Scholar 

  8. B Demir, I H Sarpun, A Kaplan, V Çapalı, A Aydın and E Tel J. Fusion Energy 34(4) 808 (2015)

    Article  Google Scholar 

  9. E Tel, H M Şahin, A Kaplan, A Aydin and T Altınok Ann. Nucl. Energy 35(2) 220 (2008)

  10. Experimental Nuclear Reaction Data (EXFOR/CSISRS), Available from http://www.nndc.bnl.gov/exfor

  11. A Koning, S Hilaire and S Goriely TALYS User Manual (NRG, The Netherlands) (2017)

    Google Scholar 

  12. M Herman, et al EMPIRE User’s Manual (2013)

  13. S Haykin Neural Networks: A Comprehensive Foundation, second ed. (New Jersey: Prentice-Hall). ISBN:0132733501 (1999)

  14. M El Mashad et al., Tenth Radiation Physics & Protection Conference, 27–30 November 2010, Nasr City–Cairo, Egypt. EG1100479, 269 (2010)

  15. H Demuth and M Beale, Neural Network Toolbox User’s Guide V4. The MathWorks Inc. (2004)

  16. F Kadem, M Belgaid and A Amokrane Nucl. Instrum. Methods Phys. Res. B 266 3213 (2008)

    Article  ADS  Google Scholar 

  17. M Belgaid and M Asghar Nucl. Instrum. Methods Phys. Res. B 142 463 (1998)

    Article  ADS  Google Scholar 

  18. M Belgaid and M Asghar Instrum. Methods Phys. Res. B 149 383 (1999)

    Article  ADS  Google Scholar 

  19. A Yu Konobeyev, V P Lunev and Yu N Shubin Nucl. Instrum. Methods Phys. Res. B 108 233 (1996)

    Article  ADS  Google Scholar 

  20. J Csikai, V Semkova, R Dóczi, A D Majdeddin, M Várnagy, C M Buczkó and A Fenyvesi Fusion Eng. Des. 37 65 (1997)

    Article  Google Scholar 

  21. F I Habbani and T O Khalda Appl. Radiat. Isot. 54 283 (2001)

    Article  Google Scholar 

  22. Y Kasugai, Y Ikeda, H Yamamoto and K Kawade, Ann. Nucl. Energy 23(18) 1429 (1996)

    Article  Google Scholar 

  23. Y Kasugai, Y Ikeda, H Yamamoto and K Kawade Ann. Nucl. Energy 25(7) 421 (1998)

    Article  Google Scholar 

  24. C H M Broeders and A Yu Konobeyev Nucl. Phys. A 780 130 (2006)

    Article  ADS  Google Scholar 

  25. E Tel, B Şarer, Ş Okuducu, A Aydin and G Tanir J. Phys. G Nucl. Part. Phys. 29 2169 (2003)

    Article  ADS  Google Scholar 

  26. M El Mashad, et al., Tenth Radiation Physics Protection Conference, Cairo/Egypt. 269 (2010)

  27. Yu A Korovin and A V Maksimus Phys. Atom. Nuclei 78(12) 1406 (2015)

    Article  ADS  Google Scholar 

  28. B P Dubey, S K Kataria, A K Mohanty Nucl. Instrum. Methods Phys. Res. A 397 426 (1997)

    Article  ADS  Google Scholar 

  29. T Bayram, S Akkoyun and Ş Şentürk Phys. Atom. Nuclei 81(3) 288 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veli Çapali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çapali, V. Investigation of neutron-induced reaction cross section calculations for the fusion reactor structural materials using artificial neural networks. Indian J Phys 95, 1821–1831 (2021). https://doi.org/10.1007/s12648-020-01837-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01837-w

Keywords

Navigation