Skip to main content
Log in

Electroflotation Extraction of Titanium Oxide and Nitride Powders from Aqueous Solutions

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

The kinetics of the electroflotation process of extracting TiO2 and TiN powders from wastewater was studied. As the experimental results show, stationary values are reached in 20 – 25 min. The electroflotation extraction ratio for titanium nitride powder without additives is low, 15 – 20%. The introduction of the anionic surfactant NaDBS and the cationic surfactant SeptaSAS increases the extraction ratio to 50 – 65% in NaCl and 45 – 60% in Na2SO4. The growth of the TiN extraction ratio is associated with the hydrophobization of the surface and growth of the particles of the dispersed phase. The highest extraction ratios are obtained by adding coagulants and coagulant-surfactant compositions. The two compositions Al3+–NaDBS and Fe3+–NaDBS work most effectively in Na2SO4 solutions; the extraction ratio is equal to 96%. High values of the extraction ratio are observed for TiO2 with the addition of the compositions Al3+ – surfactant and Fe3+ – surfactant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. S. Farrokhpay, “A review of polymeric dispersant stabilisation of titania pigment,” Adv. Colloid Interface Sci., 151(1 – 2), 24 – 32 (2009).

    Article  CAS  Google Scholar 

  2. H. Masuda, K. Higashitani, and H. Yoshida, Powder Technology Handbook, CRC Press, Boca Raton (2006).

    Book  Google Scholar 

  3. V. A. Kolesnikov, Y. I. Kapustin, M. K. Isaev, and A. V. Kolesnikov, “Metal oxides: Promising materials for electrochemical processes,” Steklo Keram., No. 12, 23 – 28 (2017); V. A. Kolesnikov, Y. I. Kapustin, M. K. Isaev, and A. V. Kolesnikov, “Metal oxides: Promising materials for electrochemical processes,” Glass Ceram., 73(11 – 12), 454 – 458 (2017).

  4. V. A. Kolesnikov, V. T. Novikov, M. K. Isaev, et al., “Investigation of electrodes with an active layer of a mixture of the oxides TiO2, RuO2, SnO2,” Steklo Keram., No. 4, 26 – 32 (2018); V. A. Kolesnikov, V. T. Novikov, M. K. Isaev, et al., “Investigation of electrodes with an active layer of a mixture of the oxides TiO2, RuO2, SnO2,” Glass Ceram., 75(3 – 4), 148 – 153 (2018).

  5. M. K. Isaev, L. A. Goncharova, V. T. Novikov, and A. V. Kolesnikov, “Study of electrode materials based on mixtures of rare-earth metal, titanium, and ruthenium oxides,” Steklo Keram., No. 6, 23 – 29 (2019); M. K. Isaev, L. A. Goncharova, V. T. Novikov, and A. V. Kolesnikov, “Study of electrode materials based on mixtures of rare-earth metal, titanium, and ruthenium oxides,” Glass Ceram., 76(5 – 6), 219 – 224 (2019).

  6. V. A. Tikhonov, S. V. Lanovetskii, and V. E. Tkacheva, “Study of the photocatalytic activity of highly dispersed titanium dioxide,” Vest. Kazan. Tekhnol. Univ., 19(9), 148 – 150 (2016).

    Google Scholar 

  7. P. Maheswari, S. Harish, M. Navaneethan, et al., “Bio-modified TiO2 nanoparticles with Withania somnifera, Eclipta prostrata and Glycyrrhiza glabra for anticancer and antibacterial applications,” Mater. Sci. Eng. C, 108 (2020).

  8. J. P. Holmberg, E. Ahlberg, J. Bergenholtz, et al., “Surface charge and interfacial potential of titanium dioxide nanoparticles: Experimental and theoretical investigations,” J. Colloid Interface Sci., 407, 168 – 176 (2013).

    Article  CAS  Google Scholar 

  9. E. V. Shkolnikov, “Influence of polymorphism and dispersion of titanium dioxide on solubility in acidic and alkaline media,” Izv. Sankt-Peterburg. Lesotekh. Akad., No. 215, 266 – 275 (2016).

    Google Scholar 

  10. L. A. Pasechnik, A. G. Shirokova, I. S. Medyankina, and S. P. Yatsenko, “Concentration and purification of rare metals in the processing of technogenic waste,” Tr. Kolskogo Nauch. Tsentra Ross. Akad. Nauk, No. 5(31), 186 – 189 (2015).

  11. V. I. Zhuchkov, A. V. Sychev, O. V. Zayakin, and L. I. Leontiev, “Use of technogenic waste from ferroalloy production,” in: Proc. of Congress with International Participation and Conf. of Young Scientists on Basic Research and Applied Development of the Reprocessing and Recycling of Technogenic Formations Technogen-2019, Ekaterinburg, June 18 – 21, 2019 [in Russian], Ekaterinburg (2019), pp. 96 – 98.

  12. N. T. Andrianov, V. L. Balkevich, A. V. Belyakov, et al., Chemical Technology of Ceramics [in Russian], Stroimaterialy, Moscow (2012).

    Google Scholar 

  13. E. N. Kuzin and N. E. Krutchinina, “Purification of circulating and waste water in metallurgical industry using complex coagulants,” CIS Iron Steel Rev., 18, 72 – 75 (2019).

    Article  Google Scholar 

  14. E. N. Kuzin, P. I. Chernyshev, N. S. Vizen, and N. E. Krutchinina, “The purification of the galvanic industry wastewater of chromium (VI) compounds using titanium (III) chloride,” Russ. J. General Chem., 88(13), 2954 – 2957 (2018).

    Article  CAS  Google Scholar 

  15. E. N. Kuzin and N. E. Krutchinina, “Hydrolysis and chemical activity of aqueous TiCl4 solutions,” Neorg. Mater., 55(8), 885 – 889 (2019).

    Article  Google Scholar 

  16. A. V. Kolesnikov, D. S. Savel’ev, V. A. Kolesnikov, and T. V. Davydkova, “Electroflotation extraction of highly disperse titanium dioxide TiO2 from water solutions of electrolytes,” Steklo Keram., No. 6, 32 – 36 (2018); A. V. Kolesnikov, D. S. Savel’ev, V. A. Kolesnikov, and T. V. Davydkova, “Electroflotation extraction of highly disperse titanium dioxide TiO2 from water solutions of electrolytes,” Glass Ceram., 75(5 – 6), 237 – 241 (2018).

  17. V. P. Meshalkin, A. V. Kolesnikov, D. S. Savelyev, et al., “Analysis of the physicochemical efficiency of the electroflotation process of extracting hydrolysis products of titanium tetrachloride from technogenic wastewater,” Dokl Akad. Nauk, 486(6), 680 – 684 (2019).

    Google Scholar 

  18. V. A. Kolesnikov, “Electroflotation recovery of highly dispersed carbon materials from aqueous solutions of electrolyte,” Separation Purification Technol., 209, 73 – 78 (2019).

    Article  CAS  Google Scholar 

  19. G. A. Kokarev, V. A. Kolesnikov, and Yu. I. Kapustin, Interphase Phenomena at Oxide-Solution Interfaces [in Russian], RKhTU im. D. I. Mendeleeva, Moscow (2004).

  20. V. A. Kolesnikov, V. A. Brodsky, A. V. Perfileva, and A. V. Kolesnikov, “Electroflotation extraction of sparingly soluble compounds of non-ferrous and rare-earth metals from liquid technological waste,” Pure Appl. Chem., 89(10), 1535 – 1541 (2017).

    Article  CAS  Google Scholar 

  21. V. A. Kolesnikov, V. I. Il’in, V. A. Brodsky, and A. V. Kolesnikov, “Electroflotation in the water purification and extraction of valuable components from liquid technogenic waste. Review. Part 1,” Teor. Osnovy Khim. Tekhnol., 51(4), 361 – 375 (2017).

Download references

This research was supported by the RFBR under project No. 18-29-24010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kolesnikov.

Additional information

Translated from Steklo i Keramika, No. 6, pp. 3 – 11, June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnikov, A.V., Kasyanov, V.S., Davydkova, T.V. et al. Electroflotation Extraction of Titanium Oxide and Nitride Powders from Aqueous Solutions. Glass Ceram 77, 205–211 (2020). https://doi.org/10.1007/s10717-020-00272-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-020-00272-x

Key words

Navigation