Skip to main content
Log in

Bayesian space-time gap filling for inference on extreme hot-spots: an application to Red Sea surface temperatures

  • Published:
Extremes Aims and scope Submit manuscript

Abstract

We develop a method for probabilistic prediction of extreme value hot-spots in a spatio-temporal framework, tailored to big datasets containing important gaps. In this setting, direct calculation of summaries from data, such as the minimum over a space-time domain, is not possible. To obtain predictive distributions for such cluster summaries, we propose a two-step approach. We first model marginal distributions with a focus on accurate modeling of the right tail and then, after transforming the data to a standard Gaussian scale, we estimate a Gaussian space-time dependence model defined locally in the time domain for the space-time subregions where we want to predict. In the first step, we detrend the mean and standard deviation of the data and fit a spatially resolved generalized Pareto distribution to apply a correction of the upper tail. To ensure spatial smoothness of the estimated trends, we either pool data using nearest-neighbor techniques, or apply generalized additive regression modeling. To cope with high space-time resolution of data, the local Gaussian models use a Markov representation of the Matérn correlation function based on the stochastic partial differential equations (SPDE) approach. In the second step, they are fitted in a Bayesian framework through the integrated nested Laplace approximation implemented in R-INLA. Finally, posterior samples are generated to provide statistical inferences through Monte-Carlo estimation. Motivated by the 2019 Extreme Value Analysis data challenge, we illustrate our approach to predict the distribution of local space-time minima in anomalies of Red Sea surface temperatures, using a gridded dataset (11315 days, 16703 pixels) with artificially generated gaps. In particular, we show the improved performance of our two-step approach over a purely Gaussian model without tail transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bivand, R., Gómez-Rubio, V., Rue, H.: Spatial data analysis with r-INLA with some extensions. J. Stat. Softw. 63(20), 1–31 (2015)

    Google Scholar 

  • Blanchet, J., Creutin, J.-D.: Co-occurrence of extreme daily rainfall in the french mediterranean region. Water Resour. Res. 53(11), 9330–9349 (2017)

    Google Scholar 

  • Bortot, P., Coles, S., Tawn, J.: The multivariate gaussian tail model: an application to oceanographic data. J. Royal Stat. Soc. Series C (Appl. Stat.) 49(1), 31–049 (2000)

    MathSciNet  MATH  Google Scholar 

  • Cantin, N.E., Cohen, A.L., Karnauskas, K.B., Tarrant, A.M., McCorkle, D.C.: Ocean warming slows coral growth in the central Red Sea. Science 329, 322–325 (2010)

    Google Scholar 

  • Castro-Camilo, D., Huser, R.: Local likelihood estimation of complex tail dependence structures, applied to U.S. precipitation extremes. Journal of the American Statistical Association, To appear (2019)

  • Castro-Camilo, D., Huser, R., Rue, H.: A spliced gamma-generalized Pareto model for short-term extreme wind speed probabilistic forecasting. J. Agricult. Biol Environ Stat 24(3), 517–534 (2019)

    MathSciNet  MATH  Google Scholar 

  • Chaidez, V., Dreano, D., Agusti, S., Duarte, C.M., Hoteit, I.: Decadal trends in red sea maximum surface temperature. Sci. Reports 7(1), 1–8 (2017)

    Google Scholar 

  • Chavez-Demoulin, V., Davison, A.C.: Generalized additive modelling of sample extremes. J. Royal Stat. Soc. Series C (Appl. Stat.) 54, 207–222 (2005)

    MathSciNet  MATH  Google Scholar 

  • Coles, S., Heffernan, J., Tawn, J.: Dependence measures for extreme value analyses. Extremes 2(4), 339–365 (1999)

    MATH  Google Scholar 

  • Cressie, N.: Statistics for spatial data. Wiley, New York (1993)

    MATH  Google Scholar 

  • Cressie, N., Wikle, C.K.: Statistics for spatio-temporal data. Wiley, New York (2015)

    MATH  Google Scholar 

  • Davison, A.C., Padoan, S., Ribatet, M.: Statistical modelling of spatial extremes. Stat. Sci. 27(2), 161–186 (2012)

    MATH  Google Scholar 

  • Davison, A.C., Ramesh, N.I.: Local likelihood smoothing of sample extremes. J. Royal Stat. Soc. Series B (Stat. Methodol.) 62, 191–208 (2000)

    MathSciNet  MATH  Google Scholar 

  • De Coninck, A., De Baets, B., Kourounis, D., Verbosio, F., Schenk, O., Maenhout, S., Fostier, J.: Needles: toward large-scale genomic prediction with marker-by-environment interaction. Genetics 203(1), 543–555 (2016)

    Google Scholar 

  • Donlon, C.J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E., Wimmer, W.: The operational sea surface temperature and sea ice analysis (OSTIA) system. Remote Sens. Environ. 116, 140–158 (2012)

    Google Scholar 

  • Ferreira, A., De Haan, L.: The generalized Pareto process; with a view towards application and simulation. Bernoulli 20(4), 1717–1737 (2014)

    MathSciNet  MATH  Google Scholar 

  • Gerber, F., De Jong, R., Schaepman, M.E., Schaepman-Strub, G., Furrer, R.: Predicting missing values in spatio-temporal remote sensing data. IEEE Trans. Geosci. Remote Sens. 56(5), 2841–2853 (2018)

    Google Scholar 

  • Gneiting, T., Ranjan, R.: Comparing density forecasts using threshold- and quantile-weighted scoring rules. J. Business Econ. Stat. 29(3), 411–422 (2011)

    MathSciNet  MATH  Google Scholar 

  • Hazra, A., Huser, R.: Estimating high-resolution Red Sea surface temperature hotspots, using a low-rank semiparametric spatial model. arXiv:1912.05657 (2020)

  • Henn, B., Raleigh, M.S., Fisher, A., Lundquist, J.D.: A comparison of methods for filling gaps in hourly near-surface air temperature data. J. Hydrometeorol. 14(3), 929–945 (2013)

    Google Scholar 

  • Hoegh-Guldberg, O., Cai, R., Poloczanska, E.S., Brewer, P., Sundby, S., Hilmi, K., Fabry, V.J., Jung, S.: The Ocean. In: Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Girma, B., Kissel, E.S., Levy, A.N., Maccracken, S., Mastrandrea, P.R., White, L.L. (eds.) Climate change 2014: impacts, adaptation, and vulnerability. Part B2 regional aspects. contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change, pp 1655–1731. Cambridge University Press, Cambridge (2014)

  • Huser, R.: Editorial: EVA 2019 data competition on spatio-temporal prediction of Red Sea surface temperature extremes. Extremes, To appear (2020)

  • Jonathan, P., Randell, D., Wu, Y., Ewans, K.: Return level estimation from non-stationary spatial data exhibiting multidimensional covariate effects. Ocean Eng. 88, 520–532 (2014)

    Google Scholar 

  • Kourounis, D., Fuchs, A., Schenk, O.: Toward the next generation of multiperiod optimal power flow solvers. IEEE Trans Power Syst 33(4), 4005–4014 (2018)

    Google Scholar 

  • Krainski, E.T., Gȯmez-Rubio, V., Bakka, H., Lenzi, A., Castro-Camilo, D., Simpson, D., Lindgren, F., Rue, H: Advanced spatial modeling with stochastic partial differential equations using R and INLA. Chapman and Hall/CRC, London (2018)

    MATH  Google Scholar 

  • Lindgren, F., Rue, H., Lindström, J.: An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. J. Royal Stat. Soc. Series B (Stat. Methodol) 73(4), 423–498 (2011)

    MathSciNet  MATH  Google Scholar 

  • Mariethoz, G., McCabe, M.F., Renard, P.: Spatiotemporal reconstruction of gaps in multivariate fields using the direct sampling approach. Water Resour. Res. 48(10) (2012)

  • Mhalla, L., de Carvalho, M., Chavez-Demoulin, V.: Regression-type models for extremal dependence. Scand. J. Stat. 46(4), 1141–1167 (2019)

    MathSciNet  MATH  Google Scholar 

  • van Niekerk, J., Bakka, H., Rue, H, Schenk, L.: New frontiers in Bayesian modeling using the INLA package in R. arXiv:1907.10426 (2019)

  • Opitz, T.: Latent Gaussian modeling and INLA: a review with focus on space-time applications. J. French Stat. Soc. (Special Issue on Space-Time Statistics) 158(3), 62–85 (2017)

    MathSciNet  MATH  Google Scholar 

  • Opitz, T., Huser, R., Bakka, H., Rue, H.: INLA goes extreme: Bayesian tail regression for the estimation of high spatio-temporal quantiles. Extremes 21(3), 441–462 (2018)

    MathSciNet  MATH  Google Scholar 

  • Padhee, S.K., Dutta, S.: Spatio-temporal reconstruction of MODIS NDVI by regional land surface phenology and harmonic analysis of time-series. GISci. Remote Sens. 56(8), 1261–1288 (2019)

    Google Scholar 

  • Pauli, F., Coles, S.: Penalized likelihood inference in extreme value analyses. J. Appl. Stat. 28(5), 547–560 (2001)

    MathSciNet  MATH  Google Scholar 

  • Rue, H., Martino, S., Chopin, N.: Approximate Bayesian inference for latent gaussian models by using integrated nested laplace approximations. J. Royal Stat. Soc. Series B (Stat. Methodol.) 71(2), 319–392 (2009)

    MathSciNet  MATH  Google Scholar 

  • Rue, H., Riebler, A., Sørbye, S.H., Illian, J.B., Simpson, D.P., Lindgren, F.K.: Bayesian computing with INLA: a review. Annual Rev. Stat. Appl. 4, 395–421 (2017)

    Google Scholar 

  • Simpson, D., Rue, H., Riebler, A., Martins, T.G., Sørbye, S.H.: Penalising model component complexity: a principled, practical approach to constructing priors. Stat. Sci. 32(1), 1–28 (2017)

    MathSciNet  MATH  Google Scholar 

  • Simpson, E.S., Wadsworth, J.L.: Conditional modelling of spatio-temporal extremes for Red Sea surface temperatures. arXiv:2002.04362(2020)

  • Spalding, M., Spalding, M.D., Ravilious, C., Green, E.P., et al.: World atlas of coral reefs. University of California Press, Berkeley (2001)

    Google Scholar 

  • Sun, Y., Genton, M.G.: Functional boxplots. J. Comput. Graph. Stat. 20(2), 316–334 (2011)

    MathSciNet  Google Scholar 

  • Thibaud, E., Opitz, T.: Efficient inference and simulation for elliptical pareto processes. Biometrika 102(4), 855–870 (2015)

    MathSciNet  MATH  Google Scholar 

  • Tierney, L., Kadane, J.B.: Accurate approximations for posterior moments and marginal densities. J. Am. Stat. Assoc. 81(393), 82–86 (1986)

    MathSciNet  MATH  Google Scholar 

  • Verbosio, F., Coninck, A.D., Kourounis, D., Schenk, O.: Enhancing the scalability of selected inversion factorization algorithms in genomic prediction. J. Comput. Sci. 22(Supplement C), 99–108 (2017)

    Google Scholar 

  • Wadsworth, J.L., Tawn, J.: Higher-dimensional spatial extremes via single-site conditioning. arXiv:1912.06560 (2019)

  • Wang, G., Garcia, D., Liu, Y., De Jeu, R., Dolman, A.J.: A three-dimensional gap filling method for large geophysical datasets: application to global satellite soil moisture observations. Environ. Modell. Softw. 30, 139–142 (2012)

    Google Scholar 

  • Wood, S.N.: Thin plate regression splines. J. Royal Stat. Soc. Series B (Stat. Methodol.) 65(1), 95–114 (2003)

    MathSciNet  MATH  Google Scholar 

  • Wood, S.N.: Low-rank scale-invariant tensor product smooths for generalized additive mixed models. Biometrics 62(4), 1025–1036 (2006)

    MathSciNet  MATH  Google Scholar 

  • Wood, S.N.: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. Royal Stat. Soc. Series B (Stat. Methodol.) 73(1), 3–36 (2011)

    MathSciNet  MATH  Google Scholar 

  • Wood, S.N.: Generalized additive models: an introduction with r, 2nd edn. Chapman and Hall/CRC, London (2017)

    MATH  Google Scholar 

  • Wood, S.N., Pya, N., Sȧfken, B.: Smoothing parameter and model selection for general smooth models. J. Am. Stat. Assoc. 111(516), 1548–1563 (2016)

    MathSciNet  Google Scholar 

  • Xing, C., Chen, N., Zhang, X., Gong, J.: A machine learning based reconstruction method for satellite remote sensing of soil moisture images with in situ observations. Remote Sens. 9(5), 484 (2017)

    Google Scholar 

  • Xu, G., Genton, M.G.: Tukey g-and-h random fields. J. Am. Stat. Assoc. 112(519), 1236–1249 (2017)

    MathSciNet  Google Scholar 

  • Yin, G., Mariethoz, G., McCabe, M.F.: Gap-filling of Landsat 7 imagery using the direct sampling method. Remote Sens. 9(1), 12 (2017)

    Google Scholar 

  • Youngman, B.D.: Generalized additive models for exceedances of high thresholds with an application to return level estimation for U.S. wind gusts. J. Am. Stat. Assoc. 114(528), 1865–1879 (2019)

    MathSciNet  MATH  Google Scholar 

  • Yuan, H., Dai, Y., Xiao, Z., Ji, D., Shangguan, W.: Reprocessing the MODIS leaf area index products for land surface and climate modelling. Remote Sens. Environ. 115(5), 1171–1187 (2011)

    Google Scholar 

Download references

Acknowledgements

This work started when Daniela Castro-Camilo was a postdoctoral fellow at King Abdullah University of Science and Technology (KAUST). Support from the KAUST Supercomputing Laboratory and access to Shaheen is therefore gratefully acknowledged. Linda Mhalla acknowledges the financial support of the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Mhalla.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro-Camilo, D., Mhalla, L. & Opitz, T. Bayesian space-time gap filling for inference on extreme hot-spots: an application to Red Sea surface temperatures. Extremes 24, 105–128 (2021). https://doi.org/10.1007/s10687-020-00394-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10687-020-00394-z

Keywords

AMS 2000 Subject Classifications

Navigation