Skip to main content
Log in

Particle-scale numerical modeling of thermo-mechanical phenomena for additive manufacturing using the material point method

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

A fundamental numerical model at the powder particle scale based on the material point method (MPM) is developed for selective laser sintering (SLS). In order to describe the thermo-mechanical phenomena, a laser heat source model with a Gaussian energy distribution and the Perzyna viscoplastic model with a return mapping algorithm are employed. The principal process conditions, such as the laser power and radius, and the scanning speed are systematically varied. Based on the obtained temperature distribution generated by laser irradiation under these conditions, elastic–viscoplastic stresses were calculated to evaluate the deformation of powder particle pairs under the driving force of surface tension via a simple two-dimensional test case. The developed MPM model can capture minute changes of the deformation behavior and the temperature distribution history during melting and consolidation at the particle scale. Melting and consolidation of particle pairs during SLS are basic nature in determining the final product quality. The model can help to evaluate variations in the fusion of microscopic areas, melted by a laser, resulting from variations in the process conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abdul-Hameed H, Messager T, Ayoub G, Zaïri F, Naït-Abdelaziz M, Qu Z, Zaïri F (2014) A two-phase hyperelastic-viscoplastic constitutive model for semi-crystalline polymers: application to polyethylene materials with a variable range of crystal fractions. J Mech Behav Biomed Mater 37:323–332. https://doi.org/10.1016/j.jmbbm.2014.04.016

    Article  Google Scholar 

  2. Abu Al-Rub R, Tehrani A, Darabi M (2015) Application of a large deformation nonlinear-viscoelastic viscoplastic viscodamage constitutive model to polymers and their composites. Int J Damage Mech 24:198–244. https://doi.org/10.1177/1056789514527020

    Article  Google Scholar 

  3. Aleksy N, Kermuche G, Vautrin A, Bergheau JM (2010) Numerical study of scratch velocity effect on recovery of viscoelastic-viscopkastic solides. Int J Mech Sci 52:455–463

    Article  Google Scholar 

  4. Ammer R, Markl M, Ljungblad U, Körner C, Rüde U (2014) Simulating fast electron beam melting with a parallel thermal free surface lattice boltzmann method. Comput Math Appl 67(2):318–330. https://doi.org/10.1016/j.camwa.2013.10.001 Mesoscopic Methods for Engineering and Science (Proceedings of ICMMES-2012, Taipei, Taiwan, 23–27 July 2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arruda EM, Boyce MC, Jayachandran R (1995) Effects of strain rate, temperature and thermomechanical coupling on the finite strain deformation of glassy polymers. Mech Mater 19(2):193–212. https://doi.org/10.1016/0167-6636(94)00034-E

    Article  Google Scholar 

  6. Balemans C, Jaensson N, Hulsen M, Anderson P (2018) Temperature-dependent sintering of two viscous particles. Add Manuf 24:528–542. https://doi.org/10.1016/j.addma.2018.09.005

    Article  Google Scholar 

  7. Bardenhagen SG, Kober EM (2004) The generalized interpolation material point method. Comput Model Eng Sci 5(6):477–496. https://doi.org/10.3970/cmes.2004.005.477

    Article  Google Scholar 

  8. Bierwisch C, Mohseni-mofidi S, Dietemann B, Rudloff J, Baumann S, Popp K, Lang M (2019) Particle-based simulations and dimensional analysis of selective laser sintering of PA12 powder. In: Auricchio F, Rank E, Steinmann P, Kollmannsberger S, Morganti S (eds) Sim-AM 2019. CIMNE, Barcelona, pp 316–327

    Google Scholar 

  9. Brackbill J, Kothe D, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100(2):335–354. https://doi.org/10.1016/0021-9991(92)90240-Y

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen Z, Brannon RM (2002) An evaluation of the material point method. SAND report SAND2002-0482

  11. Chen L, Lee J, Chen Cf (2012) On the modeling of surface tension and its applications by the generalized interpolation material point method. Comput Model Eng Sci 86:199–224. https://doi.org/10.3970/cmes.2012.086.199

    Article  MATH  Google Scholar 

  12. Dong Y, Grabe J (2018) Large scale parallelisation of the material point method with multiple GPUS. Comput Geotech 101:149–158. https://doi.org/10.1016/j.compgeo.2018.04.001

    Article  Google Scholar 

  13. Drozdov A, Christiansen J (2003) Model for the viscoelastic and viscoplastic responses of semicrystalline polymers. J Appl Polym Sci 88:1438–1450. https://doi.org/10.1002/app.11797

    Article  Google Scholar 

  14. Du Y, You X, Qiao F, Guo L, Liu Z (2019) A model for predicting the temperature field during selective laser melting. Results Phys 12:52–60. https://doi.org/10.1016/j.rinp.2018.11.031

    Article  Google Scholar 

  15. Fincan M (2015) Assessing viscoelastic properties of polydimethylsibxane (PDMS) using loading and unloading of the macroscopic compression test. PhD thesis, University of South Florida

  16. Fürstenau JP, Wessels H, Weißenfels C, Wriggers P (2020) Generating virtual process maps of SLM using powder scale SPH simulations. Comput Part Mech 7:655–677. https://doi.org/10.1007/s40571-019-00296-3

    Article  Google Scholar 

  17. Ganeriwala R, Zohdi T (2016) A coupled discrete element-finite difference model of selective laser sintering. Granul Matter 18:21. https://doi.org/10.1007/s10035-016-0626-0

    Article  Google Scholar 

  18. Inoue T, Wang ZG (1988) Thermal and mechanical fields in continuous casting slab—a steady state analysis incorporating solidification. Arch Appl Mech 58(4):265–275. https://doi.org/10.1007/BF00535936

    Article  Google Scholar 

  19. Kermouche G, Aleksy N, Bergheau JM (2013) Viscoelastic-viscoplastic modelling of the scratch response of PMMA. Adv Mater Sci Eng. https://doi.org/10.1155/2013/289698

    Article  Google Scholar 

  20. Khairallah SA, Anderson AT, Rubenchik A, King WE (2016) Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 108:36–45. https://doi.org/10.1016/j.actamat.2016.02.014

    Article  Google Scholar 

  21. Kinstlinger IS, Bastian AA, Paulsen SJ, Hwang DH, Ta AH, Yalacki DR, Schmidt T, Miller JS (2016) Open-source selective laser sintering (opensls) of nylon and biocompatible polycaprolactone. PLoS One 11:e0147399

    Article  Google Scholar 

  22. Kruth JP, Levy G, Schindel R, Craeghs T, Yasa E (2008) Consolidation of polymer powders by selective laser sintering. In: Proceedings of the 3rd international conference on polymers and moulds innovations, pp 15–30

  23. Majewski C, Zarringhalam H, Hopkinson N (2008) Effect of the degree of particle melt on mechanical properties in selective laser-sintered Nylon-12 parts. Proc Inst Mech Eng, Part B: J Eng Manuf 222:1055–1064. https://doi.org/10.1243/09544054JEM1122

    Article  Google Scholar 

  24. Perzyna P (1971) Thermodynamic theory of viscoplasticity. Adv Appl Mech 11:313–354

    Article  Google Scholar 

  25. Peyre P, Rouchausse Y, Defauchy D, Regnier G (2015) Experimental and numerical analysis of the selective laser sintering (SLS) of PA12 and PEKK semi-crystalline polymers. J Mater Process Technol 225:326–336. https://doi.org/10.1016/j.jmatprotec.2015.04.030

    Article  Google Scholar 

  26. Russell M, Souto-Iglesias A, Zohdi T (2018) Numerical simulation of laser fusion additive manufacturing processes using the SPH method. Comput Methods Appl Mech Eng 341:163–187. https://doi.org/10.1016/j.cma.2018.06.033

    Article  MathSciNet  MATH  Google Scholar 

  27. Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New York

    MATH  Google Scholar 

  28. Steffen M, Wallstedt P, Guilkey J, Kirby R, Berzins M (2008) Examination and analysis of implementation choices within the material point method (MPM). Comput Model Eng Sci 31(2):107–127

    Google Scholar 

  29. Stomakhin A, Schroeder C, Jiang C, Chai L, Teran J, Selle A (2014) Augmented MPM for phase-change and varied materials. ACM Trans Graph 33(4):1–11. https://doi.org/10.1145/2601097.2601176

    Article  MATH  Google Scholar 

  30. Sulsky D, Chen Z, Schreyer H (1994) A particle method for history-dependent materials. Comput Methods Appl Mech Eng 118(1):179–196. https://doi.org/10.1016/0045-7825(94)90112-0

    Article  MathSciNet  MATH  Google Scholar 

  31. Sulsky D, Zhou SJ, Schreyer HL (1995) Application of a particle-in-cell method to solid mechanics. Comput Phys Commun 87(1–2):236–252. https://doi.org/10.1016/0010-4655(94)00170-7

    Article  MATH  Google Scholar 

  32. Voller V, Swaminathan C (1991) General source-based method for solidification phase change. Numer Heat Trans, Part B: Fundam 19(2):175–189. https://doi.org/10.1080/10407799108944962

    Article  Google Scholar 

  33. Wang X, Qiu Y, Slattery SR, Fang Y, Li M, Zhu SC, Zhu Y, Tang M, Manocha D, Jiang C (2020) A massively parallel and scalable multi-cpu material point method. ACM Trans Graph 39(4). https://doi.org/10.1145/3386569.3392442

  34. Wessels H, Weißenfels C, Wriggers P (2018) Metal particle fusion analysis for additive manufacturing using the stabilized optimal transportation meshfree method. Comput Methods Appl Mech Eng 339:91–114. https://doi.org/10.1016/j.cma.2018.04.042

    Article  MathSciNet  MATH  Google Scholar 

  35. Yan W, Ge W, Qian Y, Lin S, Zhou B, Liu WK, Lin F, Wagner GJ (2017) Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting. Acta Mater 134:324–333. https://doi.org/10.1016/j.actamat.2017.05.061

    Article  Google Scholar 

  36. Yang WC, Arduino P, Miller GR, Mackenzie-Helnwein P (2018) Smoothing algorithm for stabilization of the material point method for fluid solid interaction problems. Comput Methods Appl Mech Eng 342:177–199. https://doi.org/10.1016/j.cma.2018.04.041

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang F, Zhang X, Sze KY, Lian Y, Liu Y (2017) Incompressible material point method for free surface flow. J Comput Phys 330:92–110

    Article  MathSciNet  Google Scholar 

  38. Zhao M, Drummer D, Wudy K, Drexler M (2015) Sintering study of polyamide 12 particles for selective laser melting. Int J Recent Contrib Eng Sci IT 3:28–33

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Maeshima.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest of any type during the production of this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

T. Maeshima and Y. Kim authors are contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maeshima, T., Kim, Y. & Zohdi, T.I. Particle-scale numerical modeling of thermo-mechanical phenomena for additive manufacturing using the material point method. Comp. Part. Mech. 8, 613–623 (2021). https://doi.org/10.1007/s40571-020-00358-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-020-00358-x

Keywords

Navigation