Skip to main content

Advertisement

Log in

Epsins in vascular development, function and disease

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Epsins are a family of adaptor proteins involved in clathrin-dependent endocytosis. In the vasculature, epsins 1 and 2 are functionally redundant members of this family that are expressed in the endothelial cells of blood vessels and the lymphatic system throughout development and adulthood. These proteins contain a number of peptide motifs that allow them to interact with lipid moieties and a variety of proteins. These interactions facilitate the regulation of a wide range of cell signaling pathways. In this review, we focus on the involvement of epsins 1 and 2 in controlling vascular endothelial growth factor receptor signaling in angiogenesis and lymphangiogenesis. We also discuss the therapeutic implications of understanding the molecular mechanisms of epsin-mediated regulation in diseases such as atherosclerosis and diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fischer JA, Leavell SK, Li Q (1997) Mutagenesis screens for interacting genes reveal three roles for fat facets during drosophila eye development. Dev Genet 21(2):167–174

    CAS  PubMed  Google Scholar 

  2. Chen H et al (2009) Embryonic arrest at midgestation and disruption of Notch signaling produced by the absence of both epsin 1 and epsin 2 in mice. Proc Natl Acad Sci USA 106(33):13838–13843

    CAS  PubMed  Google Scholar 

  3. Tian X et al (2004) Epsin potentiates notch pathway activity in drosophila and C. elegans. Development 131(23):5807–5815

    CAS  PubMed  Google Scholar 

  4. Sakamoto C et al (2004) Fission yeast epsin, Ent1p is required for endocytosis and involved in actin organization. Kobe J Med Sci 50(1–2):47–57

    CAS  PubMed  Google Scholar 

  5. Wendland B, Steece KE, Emr SD (1999) Yeast epsins contain an essential N-terminal ENTH domain, bind clathrin and are required for endocytosis. EMBO J 18(16):4383–4393

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Aguilar RC et al (2006) Epsin N-terminal homology domains perform an essential function regulating Cdc42 through binding Cdc42 GTPase-activating proteins. Proc Natl Acad Sci USA 103(11):4116–4121

    CAS  PubMed  Google Scholar 

  7. Chen H et al (1998) Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis. Nature 394(6695):793–797

    CAS  PubMed  Google Scholar 

  8. Rosenthal JA et al (1999) The epsins define a family of proteins that interact with components of the clathrin coat and contain a new protein module. J Biol Chem 274(48):33959–33965

    CAS  PubMed  Google Scholar 

  9. Ko G et al (2010) Selective high-level expression of epsin 3 in gastric parietal cells, where it is localized at endocytic sites of apical canaliculi. Proc Natl Acad Sci USA 107(50):21511–21516

    CAS  PubMed  Google Scholar 

  10. Chen H, De Camilli P (2005) The association of epsin with ubiquitinated cargo along the endocytic pathway is negatively regulated by its interaction with clathrin. Proc Natl Acad Sci USA 102(8):2766–2771

    CAS  PubMed  Google Scholar 

  11. Ford MG et al (2002) Curvature of clathrin-coated pits driven by epsin. Nature 419(6905):361–366

    CAS  PubMed  Google Scholar 

  12. Polo S et al (2002) A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins. Nature 416(6879):451–455

    CAS  PubMed  Google Scholar 

  13. Shih SC et al (2002) Epsins and Vps27p/Hrs contain ubiquitin-binding domains that function in receptor endocytosis. Nat Cell Biol 4(5):389–393

    CAS  PubMed  Google Scholar 

  14. Windler SL, Bilder D (2010) Endocytic internalization routes required for delta/notch signaling. Curr Biol 20(6):538–543

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Rahman HNA et al (2016) Selective targeting of a novel epsin-VEGFR2 interaction promotes VEGF-mediated angiogenesis. Circ Res 118(6):957–969

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu X et al (2014) Temporal and spatial regulation of epsin abundance and VEGFR3 signaling are required for lymphatic valve formation and function. Sci Signal 7(347):ra97

    PubMed  PubMed Central  Google Scholar 

  17. Flamme I, Frolich T, Risau W (1997) Molecular mechanisms of vasculogenesis and embryonic angiogenesis. J Cell Physiol 173(2):206–210

    CAS  PubMed  Google Scholar 

  18. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186

    CAS  PubMed  Google Scholar 

  19. Ausprunk DH, Folkman J (1977) Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res 14(1):53–65

    CAS  PubMed  Google Scholar 

  20. Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8(6):464–478

    CAS  PubMed  Google Scholar 

  21. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Djonov V, Baum O, Burri PH (2003) Vascular remodeling by intussusceptive angiogenesis. Cell Tissue Res 314(1):107–117

    PubMed  Google Scholar 

  23. Kaipainen A et al (1995) Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 92(8):3566–3570

    CAS  PubMed  Google Scholar 

  24. Leung DW et al (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246(4935):1306–1309

    CAS  PubMed  Google Scholar 

  25. Joukov V et al (1996) A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 15(2):290–298

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Achen MG et al (1998) Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci USA 95(2):548–553

    CAS  PubMed  Google Scholar 

  27. Maglione D et al (1991) Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor. Proc Natl Acad Sci USA 88(20):9267–9271

    CAS  PubMed  Google Scholar 

  28. Senger DR et al (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219(4587):983–985

    CAS  PubMed  Google Scholar 

  29. Yla-Herttuala S et al (2007) Vascular endothelial growth factors: biology and current status of clinical applications in cardiovascular medicine. J Am Coll Cardiol 49(10):1015–1026

    PubMed  Google Scholar 

  30. Carmeliet P et al (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380(6573):435–439

    CAS  PubMed  Google Scholar 

  31. Ferrara N et al (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380(6573):439–442

    CAS  PubMed  Google Scholar 

  32. Tammela T et al (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454(7204):656–660

    CAS  PubMed  Google Scholar 

  33. Phng LK, Gerhardt H (2009) Angiogenesis: a team effort coordinated by notch. Dev Cell 16(2):196–208

    CAS  PubMed  Google Scholar 

  34. Gerhardt H et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Simons M (2012) An inside view: VEGF receptor trafficking and signaling. Physiol (Bethesda) 27(4):213–222

    CAS  Google Scholar 

  36. Nakayama M et al (2013) Spatial regulation of VEGF receptor endocytosis in angiogenesis. Nat Cell Biol 15(3):249–260

    CAS  PubMed  PubMed Central  Google Scholar 

  37. McMahon HT, Boucrot E (2011) Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 12(8):517–533

    CAS  PubMed  Google Scholar 

  38. Kaksonen M, Roux A (2018) Mechanisms of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 19(5):313–326

    CAS  PubMed  Google Scholar 

  39. Edeling MA et al (2006) Molecular switches involving the AP-2 beta2 appendage regulate endocytic cargo selection and clathrin coat assembly. Dev Cell 10(3):329–342

    CAS  PubMed  Google Scholar 

  40. Höning S et al (2005) Phosphatidylinositol-(4,5)-bisphosphate regulates sorting signal recognition by the clathrin-associated adaptor complex AP2. Mol Cell 18(5):519–531

    PubMed  Google Scholar 

  41. Meyerholz A et al (2005) Effect of clathrin assembly lymphoid myeloid leukemia protein depletion on clathrin coat formation. Traffic 6(12):1225–1234

    CAS  PubMed  Google Scholar 

  42. Farsad K et al (2001) Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J Cell Biol 155(2):193–200

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Takei K et al (1999) Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nat Cell Biol 1(1):33–39

    CAS  PubMed  Google Scholar 

  44. Barouch W et al (1997) Auxilin-induced interaction of the molecular chaperone Hsc70 with clathrin baskets. Biochemistry 36(14):4303–4308

    CAS  PubMed  Google Scholar 

  45. Ungewickell E et al (1995) Role of auxilin in uncoating clathrin-coated vesicles. Nature 378(6557):632–635

    CAS  PubMed  Google Scholar 

  46. Ballmer-Hofer K et al (2011) Neuropilin-1 promotes VEGFR-2 trafficking through Rab11 vesicles thereby specifying signal output. Blood 118(3):816–826

    CAS  PubMed  Google Scholar 

  47. Jopling HM et al (2009) Rab GTPase regulation of VEGFR2 trafficking and signaling in endothelial cells. Arterioscler Thromb Vasc Biol 29(7):1119–1124

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Reider A, Wendland B (2011) Endocytic adaptors–social networking at the plasma membrane. J Cell Sci 124(Pt 10):1613–1622

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Frankel EB, Audhya A (2018) ESCRT-dependent cargo sorting at multivesicular endosomes. Semin Cell Dev Biol 74:4–10

    CAS  PubMed  Google Scholar 

  50. Klumperman J, Raposo G (2014) The complex ultrastructure of the endolysosomal system. Cold Spring Harb Perspect Biol 6(10):a016857

    PubMed  PubMed Central  Google Scholar 

  51. Bright NA, Davis LJ, Luzio JP (2016) Endolysosomes are the principal intracellular sites of acid hydrolase activity. Curr Biol 26(17):2233–2245

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Edgar JR (2016) Q and A: what are exosomes, exactly? BMC Biol 14:46

    PubMed  PubMed Central  Google Scholar 

  53. Grant BD, Donaldson JG (2009) Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol 10(9):597–608

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Clague MJ, Liu H, Urbé S (2012) Governance of endocytic trafficking and signaling by reversible ubiquitylation. Dev Cell 23(3):457–467

    CAS  PubMed  Google Scholar 

  55. Katzmann DJ, Babst M, Emr SD (2001) Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex ESCRT-I. Cell 106(2):145–155

    CAS  PubMed  Google Scholar 

  56. Christ L et al (2017) Cellular functions and molecular mechanisms of the ESCRT membrane-scission machinery. Trends Biochem Sci 42(1):42–56

    CAS  PubMed  Google Scholar 

  57. Schöneberg J et al (2017) Reverse-topology membrane scission by the ESCRT proteins. Nat Rev Mol Cell Biol 18(1):5–17

    PubMed  Google Scholar 

  58. Robinson MS (1994) The role of clathrin, adaptors and dynamin in endocytosis. Curr Opin Cell Biol 6(4):538–544

    CAS  PubMed  Google Scholar 

  59. Tebar F et al (1996) Eps15 is a component of clathrin-coated pits and vesicles and is located at the rim of coated pits. J Biol Chem 271(46):28727–28730

    CAS  PubMed  Google Scholar 

  60. Ucuzian AA et al (2010) Molecular mediators of angiogenesis. J Burn Care Res 31(1):158–175

    PubMed  PubMed Central  Google Scholar 

  61. Hellstrom M, Phng LK, Gerhardt H (2007) VEGF and Notch signaling: the yin and yang of angiogenic sprouting. Cell Adh Migr 1(3):133–136

    PubMed  PubMed Central  Google Scholar 

  62. Ruhrberg C et al (2002) Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev 16(20):2684–2698

    CAS  PubMed  PubMed Central  Google Scholar 

  63. De Bock K, Georgiadou M, Carmeliet P (2013) Role of endothelial cell metabolism in vessel sprouting. Cell Metab 18(5):634–647

    PubMed  Google Scholar 

  64. Takahashi H, Shibuya M (2005) The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci (Lond) 109(3):227–241

    CAS  Google Scholar 

  65. Neufeld G et al (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13(1):9–22

    CAS  PubMed  Google Scholar 

  66. Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25(4):581–611

    CAS  PubMed  Google Scholar 

  67. Sprague AH, Khalil RA (2009) Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol 78(6):539–552

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Parenti A et al (2002) Effect of hypoxia and endothelial loss on vascular smooth muscle cell responsiveness to VEGF-A: role of flt-1/VEGF-receptor-1. Cardiovasc Res 55(1):201–212

    CAS  PubMed  Google Scholar 

  69. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9(6):653–660

    CAS  PubMed  Google Scholar 

  70. Van Hove AH, Benoit DS (2015) Depot-based delivery systems for pro-angiogenic peptides: a review. Front Bioeng Biotechnol 3:102

    PubMed  PubMed Central  Google Scholar 

  71. Murakami M et al (2006) Signaling of vascular endothelial growth factor receptor-1 tyrosine kinase promotes rheumatoid arthritis through activation of monocytes/macrophages. Blood 108(6):1849–1856

    CAS  PubMed  Google Scholar 

  72. Ley CD et al (2004) Angiogenic synergy of bFGF and VEGF is antagonized by angiopoietin-2 in a modified in vivo matrigel assay. Microvasc Res 68(3):161–168

    CAS  PubMed  Google Scholar 

  73. Shibuya M (2006) Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. J Biochem Mol Biol 39(5):469–478

    CAS  PubMed  Google Scholar 

  74. Shibuya M (2011) Vascular endothelial growth factor (VEGF) and Its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer 2(12):1097–1105

    PubMed  PubMed Central  Google Scholar 

  75. Simons M, Gordon E, Claesson-Welsh L (2016) Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol 17(10):611–625

    CAS  PubMed  Google Scholar 

  76. Li X et al (2016) VEGFR2 pY949 signalling regulates adherens junction integrity and metastatic spread. Nat Commun 7:11017

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Takahashi T et al (2001) A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. EMBO J 20(11):2768–2778

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Matsumoto T et al (2005) VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis. EMBO J 24(13):2342–2353

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ito N et al (1998) Identification of vascular endothelial growth factor receptor-1 tyrosine phosphorylation sites and binding of SH2 domain-containing molecules. J Biol Chem 273(36):23410–23418

    CAS  PubMed  Google Scholar 

  80. Horowitz A, Seerapu HR (2012) Regulation of VEGF signaling by membrane traffic. Cell Signal 24(9):1810–1820

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lampugnani MG et al (2006) Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments. J Cell Biol 174(4):593–604

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Nakayama M, Berger P (2013) Coordination of VEGF receptor trafficking and signaling by coreceptors. Exp Cell Res 319(9):1340–1347

    CAS  PubMed  Google Scholar 

  83. Tessneer KL et al (2014) Genetic reduction of vascular endothelial growth factor receptor 2 rescues aberrant angiogenesis caused by epsin deficiency. Arterioscler Thromb Vasc Biol 34(2):331–337

    CAS  PubMed  Google Scholar 

  84. Pasula S et al (2012) Endothelial epsin deficiency decreases tumor growth by enhancing VEGF signaling. J Clin Invest 122(12):4424–4438

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Wu H et al (2018) Epsin deficiency promotes lymphangiogenesis through regulation of VEGFR3 degradation in diabetes. J Clin Invest 128(9):4025–4043

    PubMed  PubMed Central  Google Scholar 

  86. Yuan L et al (2002) Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 129(20):4797–4806

    CAS  PubMed  Google Scholar 

  87. Potente M, Makinen T (2017) Vascular heterogeneity and specialization in development and disease. Nat Rev Mol Cell Biol 18(8):477–494

    CAS  PubMed  Google Scholar 

  88. Norrmén C et al (2009) FOXC2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1. J Cell Biol 185(3):439–457

    PubMed  PubMed Central  Google Scholar 

  89. Zhang Y et al (2018) Heterogeneity in VEGFR3 levels drives lymphatic vessel hyperplasia through cell-autonomous and non-cell-autonomous mechanisms. Nat Commun 9(1):1296

    PubMed  PubMed Central  Google Scholar 

  90. Dong Y et al (2015) Motif mimetic of epsin perturbs tumor growth and metastasis. J Clin Invest 125(12):4349–4364

    PubMed  PubMed Central  Google Scholar 

  91. Kataru RP et al (2009) Critical role of CD11b+ macrophages and VEGF in inflammatory lymphangiogenesis, antigen clearance, and inflammation resolution. Blood 113(22):5650–5659

    CAS  PubMed  Google Scholar 

  92. Kim H, Kataru RP, Koh GY (2012) Regulation and implications of inflammatory lymphangiogenesis. Trends Immunol 33(7):350–356

    CAS  PubMed  Google Scholar 

  93. Kim H, Kataru RP, Koh GY (2014) Inflammation-associated lymphangiogenesis: a double-edged sword? J Clin Invest 124(3):936–942

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Kim KE et al (2009) Role of CD11b+ macrophages in intraperitoneal lipopolysaccharide-induced aberrant lymphangiogenesis and lymphatic function in the diaphragm. Am J Pathol 175(4):1733–1745

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Lopez Gelston CA et al (2018) Enhancing Renal Lymphatic Expansion Prevents Hypertension in Mice. Circ Res 122(8):1094–1101

    CAS  PubMed  Google Scholar 

  96. Lee Y et al (2018) Insulin resistance disrupts cell integrity, mitochondrial function and inflammatory signaling in lymphatic endothelium. Microcirculation 25(7):e12492

    PubMed  PubMed Central  Google Scholar 

  97. Lee Y et al (2017) Hyperglycemia- and hyperinsulinemia-induced insulin resistance causes alterations in cellular bioenergetics and activation of inflammatory signaling in lymphatic muscle. FASEB J 31(7):2744–2759

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Garcia Nores GD et al (2016) Obesity but not high-fat diet impairs lymphatic function. Int J Obes (Lond) 40(10):1582–1590

    CAS  Google Scholar 

  99. Nitti MD et al (2016) Obesity-induced lymphatic dysfunction is reversible with weight loss. J Physiol 594(23):7073–7087

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Weitman ES et al (2013) Obesity impairs lymphatic fluid transport and dendritic cell migration to lymph nodes. PLoS ONE 8(8):e70703

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Blum KS et al (2014) Chronic high-fat diet impairs collecting lymphatic vessel function in mice. PLoS ONE 9(4):e94713

    PubMed  PubMed Central  Google Scholar 

  102. Escobedo N et al (2016) Restoration of lymphatic function rescues obesity in Prox1-haploinsufficient mice. JCI Insight 1:2

    Google Scholar 

  103. Chakraborty A et al (2019) Vascular endothelial growth factor-D (VEGF-D) overexpression and lymphatic expansion in murine adipose tissue improves metabolism in obesity. Am J Pathol 189(4):924–939

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Guo L et al (2018) CD163+ macrophages promote angiogenesis and vascular permeability accompanied by inflammation in atherosclerosis. J Clin Invest 128(3):1106–1124

    PubMed  PubMed Central  Google Scholar 

  105. Lusis AJ (2000) Atherosclerosis. Nature 407(6801):233–241

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Robinson JG et al (2009) Atherosclerosis profile and incidence of cardiovascular events: a population-based survey. BMC Cardiovasc Disord 9:46

    PubMed  PubMed Central  Google Scholar 

  107. Galkina E, Ley K (2009) Immune and inflammatory mechanisms of atherosclerosis (*). Annu Rev Immunol 27:165–197

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Moulton KS et al (2003) Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc Natl Acad Sci USA 100(8):4736–4741

    CAS  PubMed  Google Scholar 

  109. Rafieian-Kopaei M et al (2014) Atherosclerosis: process, indicators, risk factors and new hopes. Int J Prev Med 5(8):927–946

    PubMed  PubMed Central  Google Scholar 

  110. Meir KS, Leitersdorf E (2004) Atherosclerosis in the apolipoprotein-E-deficient mouse: a decade of progress. Arterioscler Thromb Vasc Biol 24(6):1006–1014

    CAS  PubMed  Google Scholar 

  111. Emini Veseli B et al (2017) Animal models of atherosclerosis. Eur J Pharmacol 816:3–13

    CAS  PubMed  Google Scholar 

  112. Brophy ML et al (2019) Myeloid-specific deletion of epsins 1 and 2 reduces atherosclerosis by preventing LRP-1 downregulation. Circ Res 124(4):e6–e19

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Dong Y et al (2020) Epsin-mediated degradation of IP3R1 fuels atherosclerosis. Nat Commun 11(1):3984

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Jeffcoate WJ, Harding KG (2003) Diabetic foot ulcers. Lancet 361(9368):1545–1551

    PubMed  Google Scholar 

  115. Lin CT, Ou KW, Chang SC (2013) Diabetic foot ulcers combination with lower limb lymphedema treated by staged charles procedure: case report and literature review. Pak J Med Sci 29(4):1062–1064

    PubMed  PubMed Central  Google Scholar 

  116. Patel S et al (2019) Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed Pharmacother 112:108615

    CAS  PubMed  Google Scholar 

  117. Barrientos S et al (2008) Growth factors and cytokines in wound healing. Wound Repair Regen 16(5):585–601

    Google Scholar 

  118. Zhou K, Ma Y, Brogan MS (2015) Chronic and non-healing wounds: The story of vascular endothelial growth factor. Med Hypotheses 85(4):399–404

    CAS  PubMed  Google Scholar 

  119. Warren CM et al (2014) A ligand-independent VEGFR2 signaling pathway limits angiogenic responses in diabetes. Sci Signal 7(307):ra1

    PubMed  PubMed Central  Google Scholar 

  120. Saaristo A et al (2006) Vascular endothelial growth factor-C accelerates diabetic wound healing. Am J Pathol 169(3):1080–1087

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140(4):460–476

    CAS  PubMed  Google Scholar 

  122. Jeltsch M et al (1997) Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 276(5317):1423–1425

    CAS  PubMed  Google Scholar 

  123. Morris A (2018) Epsins as a target for wound-healing therapeutics. Nat Rev Endocrinol 14(10):566

    PubMed  Google Scholar 

  124. Nishida N et al (2006) Angiogenesis in cancer. Vasc Health Risk Manag 2(3):213–219

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Itatani Y et al (2018) Resistance to anti-angiogenic therapy in cancer-alterations to anti-VEGF pathway. Int J Mol Sci 19:4

    Google Scholar 

  126. Quinn TP et al (1993) Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proc Natl Acad Sci U S A 90(16):7533–7537

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Millauer B et al (1993) High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72(6):835–846

    CAS  PubMed  Google Scholar 

  128. Tessneer KL et al (2013) Epsin family of endocytic adaptor proteins as oncogenic regulators of cancer progression. J Can Res Updates 2(3):144–150

    PubMed  PubMed Central  Google Scholar 

  129. Coon BG et al (2011) Epsins’ novel role in cancer cell invasion. Commun Integr Biol 4(1):95–97

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Coon BG et al (2010) The epsin family of endocytic adaptors promotes fibrosarcoma migration and invasion. J Biol Chem 285(43):33073–33081

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Klauber-Demore N (2012) Are epsins a therapeutic target for tumor angiogenesis? J Clin Invest 122(12):4341–4343

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Dong Y et al (2016) Motif mimetic of epsin perturbs tumor growth and metastasis. J Clin Invest 126(4):1607

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants R01HL093242, R01HL146134, R01HL130845, R01HL133216, and R01HL137229 to H.C. and HL149326 to Y.L. as well as an American Heart Association Established Investigator Award to H.C. and Scientist Development Grant 17SDG334110868 to H.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Chen.

Ethics declarations

Conflict of interests

The authors have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharjee, S., Lee, Y., Zhu, B. et al. Epsins in vascular development, function and disease. Cell. Mol. Life Sci. 78, 833–842 (2021). https://doi.org/10.1007/s00018-020-03642-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03642-4

Keywords

Navigation