Skip to main content
Log in

Experimental and Numerical Investigation of Single-Phase Forced Convection in Flat Plate Heat Exchanger with Different Numbers of Passes

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Much of the present and future technology will be based on electronic devices that are operated using an electronic clip. Due to the continuous operation of the majority of electronic devices, the efficiency of such devices decreases because of inefficient cooling techniques. Therefore, the present study experimentally and numerically investigates the thermal resistance and friction factor for the flat plate heat exchanger in the range of Reynolds number 7500–38,000. The study also examines the effect of the number of passes on the thermal performance of a flat plate heat exchanger. Based on the experimental and numerical results of a 4-pass flat plate heat exchanger, the empirical correlation for the thermal resistance and friction factor is suggested to be within the error range of ± 3.5% and ± 5%, respectively. For the optimum performance of the flat plate heat exchanger, the thermal resistance and friction factor should be as low as possible. The numerical results show that the thermal resistance decreases, and the friction factor increases with the number of passes in the flat plate heat exchanger; therefore, out of 2, 4, and 6 passes, the study suggests that 4 passes provide a compromising option for thermal resistance as well as the friction factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\(\dot{Q}\) :

Flow rate of water

ν :

Kinematic viscosity

d :

Tube inner diameter

L :

Tube length

f :

Friction factor

q :

Heat flux

U :

Unfiltered velocity

u T :

Average velocity transport

ɛ :

Turbulent dissipation rate

R e :

Reynolds number

ρ :

Working fluid density

T :

Temperature

ΔP :

Pressure difference

R s :

Thermal resistance

u :

Average velocity vector

u′:

Velocity fluctuations vector

μ :

Viscosity

σ :

Prandtl number

i:

Inlet

w:

Water

s:

Surface

T:

Turbulent

References

  1. Davies, M.R.D.; Cole, R.; Lohan, J.: Factors affecting the operational thermal resistance of electronic components. J. Electron. Packag. Trans. ASME (2000). https://doi.org/10.1115/1.1286101

    Article  Google Scholar 

  2. Yeh, L.: Review of heat transfer technologies in electronic equipment. J. Electron. Packag. 117(4), 333–339 (2017). https://doi.org/10.1115/1.2792113

    Article  Google Scholar 

  3. Ebadian, M.A.; Lin, C.X.: A review of high-heat-flux heat removal technologies. J. Heat Transf. 133(11), 110801 (2011)

    Article  Google Scholar 

  4. Groll, M.; Schneider, M.; Sartre, V.; Zaghdoudi, M.C.; Lallemand, M.: Thermal control of electronic equipment by heat pipes. Rev. Gen. Therm. (1998). https://doi.org/10.1016/S0035-3159(98)80089-5

    Article  Google Scholar 

  5. Murakami, Y.; Mikić, B.B.: Parametric optimization of multichanneled heat sinks for VLSI chip cooling. IEEE Trans. Compon. Packag. Technol. (2001). https://doi.org/10.1109/6144.910795

    Article  Google Scholar 

  6. Zhao, D.; Tan, G.: A review of thermoelectric cooling: materials, modeling and applications. Appl. Therm. Eng. 66(s1–2), 15–24 (2014)

    Article  Google Scholar 

  7. Elnaggar, M.H.A., Edwan, E.: Heat pipes for computer cooling applications. In: Electronics Cooling (2016)

  8. Thammanna, J., Srivastav, A.: Thermal management in electronic equipment. HCL (2010)

  9. Peterson, G.P.; Ortega, A.: Thermal control of electronic equipment and devices. Adv. Heat Transf. (1990). https://doi.org/10.1016/S0065-2717(08)70028-5

    Article  Google Scholar 

  10. Manipatruni, S.; Dokania, R.K.; Schmidt, B.; Sherwood-Droz, N.; Poitras, C.B.; Apsel, A.B.; Lipson, M.: Wide temperature range operation of micrometer-scale silicon electro-optic modulators. Opt. Lett. (2008). https://doi.org/10.1364/ol.33.002185

    Article  Google Scholar 

  11. Hanson, F.V.: Heat exchangers selection, design and construction. Fuel Process. Technol. (1989). https://doi.org/10.1016/0378-3820(89)90046-5

    Article  Google Scholar 

  12. Martin, H.: A theoretical approach to predict the performance of chevron-type plate heat exchangers. Chem. Eng. Process. Process Intensif. (1996). https://doi.org/10.1016/0255-2701(95)04129-X

    Article  Google Scholar 

  13. Galeazzo, F.C.C.; Miura, R.Y.; Gut, J.A.W.; Tadini, C.C.: Experimental and numerical heat transfer in a plate heat exchanger. Chem. Eng. Sci. (2006). https://doi.org/10.1016/j.ces.2006.07.029

    Article  Google Scholar 

  14. Mota, F.A.S., Carvalho, E.P., Ravagnani, M.A.S.S.: Modeling and design of plate heat exchanger. In: Heat Transfer Studies and Applications (2015)

  15. Gut, J.A.W.; Pinto, J.M.: Optimal configuration design for plate heat exchangers. Int. J. Heat Mass Transf. (2004). https://doi.org/10.1016/j.ijheatmasstransfer.2004.06.002

    Article  Google Scholar 

  16. Hessel, V.: Process intensification-engineering for efficiency, sustainability and flexibility. Green Process. Synth. (2012). https://doi.org/10.1515/greenps-2011-0509

    Article  Google Scholar 

  17. Bejan, A.; Kraus, A.D.: Heat Transfer Handbook. Wiley, London (2003)

    Google Scholar 

  18. Fakheri, A.: Heat exchanger efficiency. J. Heat Transf. (2007). https://doi.org/10.1115/1.2739620

    Article  Google Scholar 

  19. Epstein, N.: Fouling of heat exchangers (1986)

  20. Mohebbi, S.; Veysi, F.: An experimental investigation on the heat transfer and friction coefficients of a small plate heat exchanger with chevron angle. Heat Mass Transf. Stoffuebertr. (2019). https://doi.org/10.1007/s00231-019-02749-0

    Article  Google Scholar 

  21. Khan, T.S.; Khan, M.S.; Chyu, M.C.; Ayub, Z.H.: Experimental investigation of single phase convective heat transfer coefficient in a corrugated plate heat exchanger for multiple plate configurations. Appl. Therm. Eng. (2010). https://doi.org/10.1016/j.applthermaleng.2010.01.021

    Article  Google Scholar 

  22. Gusew, S.; Stuke, R.: Pressure drop in plate heat exchangers for single-phase convection in turbulent flow regime: experiment and theory. Int. J. Chem. Eng. (2019). https://doi.org/10.1155/2019/3693657

    Article  Google Scholar 

  23. Kumar, B.; Soni, A.; Singh, S.N.: Effect of geometrical parameters on the performance of chevron type plate heat exchanger. Exp. Therm. Fluid Sci. (2018). https://doi.org/10.1016/j.expthermflusci.2017.09.023

    Article  Google Scholar 

  24. Kılıç, B.; İpek, O.: Experimental investigation of heat transfer and effectiveness in corrugated plate heat exchangers having different chevron angles. Heat Mass Transf. Stoffuebertr. (2017). https://doi.org/10.1007/s00231-016-1817-2

    Article  Google Scholar 

  25. Yang, J.; Jacobi, A.; Liu, W.: Heat transfer correlations for single-phase flow in plate heat exchangers based on experimental data. Appl. Therm. Eng. (2017). https://doi.org/10.1016/j.applthermaleng.2016.10.147

    Article  Google Scholar 

  26. Kanaris, A.G.; Mouza, A.A.; Paras, S.V.: Optimal design of a plate heat exchanger with undulated surfaces. Int. J. Therm. Sci. (2009). https://doi.org/10.1016/j.ijthermalsci.2008.11.001

    Article  Google Scholar 

  27. Kanaris, A.G.; Mouza, A.A.; Paras, S.V.: Flow and heat transfer in narrow channels with corrugated walls a CFD code application. Chem. Eng. Res. Des. (2005). https://doi.org/10.1205/cherd.04162

    Article  Google Scholar 

  28. Kanaris, A.G.; Mouza, A.A.; Paras, S.V.: Flow and heat transfer prediction in a corrugated plate heat exchanger using a CFD code. Chem. Eng. Technol. (2006). https://doi.org/10.1002/ceat.200600093

    Article  Google Scholar 

  29. Zhang, L.; Che, D.: Influence of corrugation profile on the thermal hydraulic performance of cross-corrugated plates. Numer. Heat Transf. Part A Appl. (2011). https://doi.org/10.1080/10407782.2011.540963

    Article  Google Scholar 

  30. Gulenoglu, C.; Akturk, F.; Aradag, S.; Sezer Uzol, N.; Kakac, S.: Experimental comparison of performances of three different plates for gasketed plate heat exchangers. Int. J. Therm. Sci. (2014). https://doi.org/10.1016/j.ijthermalsci.2013.06.012

    Article  Google Scholar 

  31. Hamzah, J.A.; Nima, M.A.: Experimental study of heat transfer enhancement in double-pipe heat exchanger integrated with metal foam fins. Arab. J. Sci. Eng. (2020). https://doi.org/10.1007/s13369-020-04371-3

    Article  Google Scholar 

  32. Soontarapiromsook, J.; Mahian, O.; Dalkilic, A.S.; Wongwises, S.: Effect of surface roughness on the condensation of R-134a in vertical chevron gasketed plate heat exchangers. Exp. Therm. Fluid Sci. (2018). https://doi.org/10.1016/j.expthermflusci.2017.09.015

    Article  Google Scholar 

  33. Zheng, D., Wang, J., Chen, Z., Baleta, J., Sundén, B.: Performance analysis of a plate heat exchanger using various nanofluids. Int. J. Heat Mass Transf. (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.119993

  34. Cornelissen, R.L.; Hirs, G.G.: Exergetic optimisation of a heat exchanger. Energy Convers. Manag. (1997). https://doi.org/10.1016/s0196-8904(96)00218-x

    Article  MATH  Google Scholar 

  35. Lenz, M., Striedl, G., Fröhler, U.: Thermal resistance theory and practice. Infineon Technologies (2000)

  36. Barman, P.C.: Introduction to computational fluid dynamics. Int. J. Inf. Sci. Comput. (2016). https://doi.org/10.5958/2454-9533.2016.00014.4

    Article  Google Scholar 

  37. Launder, B.E.; Spalding, D.B.: The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. (1974). https://doi.org/10.1016/0045-7825(74)90029-2

    Article  MATH  Google Scholar 

  38. Golijanek-Jędrzejczyk, A.; Świsulski, D.; Hanus, R.; Zych, M.; Petryka, L.: Uncertainty of the liquid mass flow measurement using the orifice plate. Flow Meas. Instrum. (2018). https://doi.org/10.1016/j.flowmeasinst.2018.05.012

    Article  Google Scholar 

  39. Ayyub, B.M.; Klir, G.J.: Uncertainty Modeling and Analysis in Engineering and the Sciences. CRC Press, London (2006)

    Book  Google Scholar 

  40. Walters, R.W., Huyse, L.: Uncertainty Analysis for Fluid Mechanics with Applications. Office. (2002)

  41. Sabzkouhi, A.M.; Haghighi, A.: Uncertainty analysis of transient flow in water distribution networks. Water Resour. Manag. (2018). https://doi.org/10.1007/s11269-018-2023-4

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges the Deanship of Scientific Research (DSR) at Majmaah University, Majmaah Saudi Arabia, for technical and financial support through Vote Number 1439-62 for this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulmajeed Almaneea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almaneea, A. Experimental and Numerical Investigation of Single-Phase Forced Convection in Flat Plate Heat Exchanger with Different Numbers of Passes. Arab J Sci Eng 45, 9769–9776 (2020). https://doi.org/10.1007/s13369-020-04906-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04906-8

Keywords

Navigation