Skip to main content
Log in

A 95 dB SFDR, 30 mW Digital Interface Circuit for a TMR Sensor

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A high-precision digital interface circuit is achieved for a tunnel magneto-resistance sensor with a high sensitivity and high dynamic range. The analog front-end detection circuit adopts the structure of a current feedback instrumentation amplifier, and a chopper technology and ripple suppression loop are used to improve the performance. In the back-end digital conversion part, a fourth-order fully feedforward sigma-delta modulator is designed, and the chopper circuit is further applied to eliminate the low frequency noise and offset of the first-stage integrator. The measurement results show that with the input equivalent magnetic field signal amplitude of 100 mV centered at 31 Hz, the SFDR of the final digital output stream reaches 95 dB, and the overall power consumption is 30 mW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Breuer, D.R.: Some techniques for precision monolithic circuits applied to an instrumentation amplifier. IEEE J. Solid-State Circuits 3(4), 331–341 (2003)

    Article  Google Scholar 

  2. Butti, F.; Dei, M.; Piotto, M.: A compact instrumentation amplifier for MEMS thermal sensor interfacing. Analog Integr. Circuits Signal Process. 72(3), 585–594 (2012)

    Article  Google Scholar 

  3. Lenz, J.; Edelstein, S.: Magnetic sensors and their applications. IEEE Sens. J. 6, 631–649 (2006)

    Article  Google Scholar 

  4. Freitas, P.P.; Ferreira, R.; Cardoso, S.: Magnetoresistive sensors. IEEE Trans. J. Magn. 19, 165221 (2007)

    Google Scholar 

  5. Pannetier, M.; Fermon, C.; le Goff, G.: Femtotesla magnetic field measurement with magnetoresistive sensors. Science 304, 1648–1650 (2004)

    Article  Google Scholar 

  6. Egelhopf Jr., W.F.; Pong, P.W.T.; Unguris, J.; et al.: Critical challenges for Picotesla magnetic-tunnel-junction sensors. Sens. Actuators A Phys. 155(2), 217–225 (2009)

    Article  Google Scholar 

  7. Luong, V.S.; Su, Y.H.; Lu, C.C.; et al.: Planarization, fabrication and characterization of three-dimensional magnetic field sensors. IEEE Trans. Nanotechnol. PP(99), 1 (2017)

    Google Scholar 

  8. Zhang, W.: Interface ASIC design for TMR-effect-based magnetic sensors. Master Dissertation Harbin Institute of Technology, Harbin, China, pp. 1–20 (2017)

  9. Fan, Q.; Huijsing, J.H.; Makinwa, K.A.A.: A capacitively-coupled chopper operational amplifier with 3 μV Offset and outside-the-rail capability. In: 2012 Proceedings of the ESSCIRC. Bordeaux, France, pp. 73–76. IEEE Press (2012)

  10. Wang, S.; Wang, Y.; Chen, L.; et al.: A 192 nW inverter-based chopper instrumentation amplifier for micropower ECG applications. In: IEEE International Conference on Solid-State and Integrated Circuit Technology, pp. 1–3. IEEE (2014)

  11. Akita, I.; Ishida, M.: A 0.06 mm2 14 nV/√Hz chopper instrumentation amplifier with automatic differential-pair matching. In: Solid-State Circuits Conference Digest of Technical Papers, pp. 178–179. IEEE (2013)

  12. Li, X.; Jianping, H.; Chen, W.; et al.: A novel high-precision digital tunneling magnetic resistance-type sensor for the nanosatellites’ space application. Micromachines 9(121), 1–18 (2018)

    Google Scholar 

  13. Sun, L.S.; Yue, F.Y.; Li, Y.H.; et al.: The design of digital magnetometer based on magnetic resistance sensor. Chin. J. Sens. Actuators 27(1), 48–52 (2014)

    Google Scholar 

  14. Zhao, Y.S.; Tang, S.K.; Ko, C.T.; et al.: A chopper-stabilized high-pass Delta-Sigma Modulator with reduced chopper charge injection. Microelectron. J. 42(5), 733–739 (2011)

    Article  Google Scholar 

  15. Fan, J.; Hei, Y.: Design of high-performance multibit quantized Σ-Δ modulator. Mircroelectronics 42(3), 306–310 (2012)

    Google Scholar 

  16. Li, X.; Yin, L.; Chen, W.; et al.: Study of a three-axis digital tunneling resistance-type magnetic sensor. IEICE Electron. Express 13(13), 1–6 (2016)

    Article  Google Scholar 

  17. Li, X.; Yin, L.; Chen, W.; et al.: A high-resolution tunneling magneto-resistance sensor interface circuit. Mod. Phys. Lett. B 31(4), 1750030-1–1750030-8 (2017)

    Article  Google Scholar 

  18. Coliy Technology, GMR50. Datasheet. http://www.coliy.com (2017)

  19. Coliy Technology, G93. Datasheet. http://www.coliy.com (2017)

Download references

Acknowledgements

Funding was provided by Advance Research Fund of The Nanjing Research Institute of Electronics Technology (Grant No. 03-1815).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglin Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Zhang, H., Fan, Y. et al. A 95 dB SFDR, 30 mW Digital Interface Circuit for a TMR Sensor. Arab J Sci Eng 46, 1095–1102 (2021). https://doi.org/10.1007/s13369-020-04932-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04932-6

Keywords

Navigation